login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A341135
Number of ways to write n as an ordered sum of 6 prime powers (including 1).
8
1, 6, 21, 56, 126, 246, 432, 702, 1077, 1576, 2232, 3072, 4118, 5382, 6891, 8638, 10653, 12948, 15563, 18486, 21783, 25398, 29394, 33708, 38422, 43452, 49008, 54888, 61308, 68076, 75434, 83034, 91473, 100248, 109947, 120018, 131191, 142458, 155049, 167622, 181629, 195660
OFFSET
6,2
MAPLE
q:= proc(n) option remember; nops(ifactors(n)[2])<2 end:
b:= proc(n, t) option remember;
`if`(n=0, `if`(t=0, 1, 0), `if`(t<1, 0, add(
`if`(q(j), b(n-j, t-1), 0), j=1..n)))
end:
a:= n-> b(n, 6):
seq(a(n), n=6..47); # Alois P. Heinz, Feb 05 2021
MATHEMATICA
nmax = 47; CoefficientList[Series[Sum[Boole[PrimePowerQ[k] || k == 1] x^k, {k, 1, nmax}]^6, {x, 0, nmax}], x] // Drop[#, 6] &
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Feb 05 2021
STATUS
approved