login
A341134
Number of ways to write n as an ordered sum of 5 prime powers (including 1).
8
1, 5, 15, 35, 70, 121, 190, 280, 395, 535, 711, 920, 1160, 1425, 1725, 2041, 2395, 2775, 3200, 3645, 4146, 4640, 5190, 5730, 6325, 6915, 7625, 8270, 9030, 9745, 10576, 11320, 12320, 13185, 14305, 15281, 16510, 17480, 18855, 19835, 21306, 22435, 24010, 25025, 26810, 27790, 29590
OFFSET
5,2
MAPLE
q:= proc(n) option remember; nops(ifactors(n)[2])<2 end:
b:= proc(n, t) option remember;
`if`(n=0, `if`(t=0, 1, 0), `if`(t<1, 0, add(
`if`(q(j), b(n-j, t-1), 0), j=1..n)))
end:
a:= n-> b(n, 5):
seq(a(n), n=5..51); # Alois P. Heinz, Feb 05 2021
MATHEMATICA
nmax = 51; CoefficientList[Series[Sum[Boole[PrimePowerQ[k] || k == 1] x^k, {k, 1, nmax}]^5, {x, 0, nmax}], x] // Drop[#, 5] &
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Feb 05 2021
STATUS
approved