login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A341056
a(n) = n! * [x^n] exp(x/(1 - n*x)) / (1 - x).
0
1, 2, 9, 106, 2801, 132426, 9705577, 1015001954, 143392421601, 26298332570386, 6074043257989001, 1724846814877790682, 590605908915568818769, 239956225437223244619866, 114123836188192016600789481, 62808518765936960824453590226, 39603421893790601518269204039617
OFFSET
0,2
FORMULA
a(n) = n! * Sum_{k=0..n} A341033(k,n)/k! = n! * (1 + Sum_{j=1.. n} Sum_{k=1.. j} n^(j-k) * binomial(j-1,k-1)/k!).
a(n) ~ BesselI(1,2) * n! * n^(n-1). - Vaclav Kotesovec, Feb 14 2021
EXAMPLE
a(3) = 3! * (1 + 1/1! + 7/2! + 73/3!) = 106.
MATHEMATICA
Table[n!*(1 + Sum[Sum[n^(j-k)*Binomial[j-1, k-1]/k!, {k, 1, j}], {j, 1, n}]), {n, 0, 20}] (* Vaclav Kotesovec, Feb 14 2021 *)
PROG
(PARI) {a(n) = n!*(1+sum(j=1, n, sum(k=1, j, n^(j-k)*binomial(j-1, k-1)/k!)))}
CROSSREFS
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Feb 04 2021
STATUS
approved