login
A340949
Number of ways to write n as an ordered sum of 4 nonzero triangular numbers.
10
1, 0, 4, 0, 6, 4, 4, 12, 1, 16, 6, 16, 12, 12, 22, 8, 36, 4, 30, 24, 21, 36, 18, 36, 28, 48, 16, 44, 36, 44, 48, 36, 46, 40, 72, 20, 73, 48, 54, 72, 42, 68, 56, 84, 50, 72, 78, 56, 84, 84, 62, 112, 60, 60, 110, 84, 97, 72, 120, 76, 116, 84, 72, 144, 102, 104, 96, 108, 102, 156, 102, 92
OFFSET
4,3
LINKS
FORMULA
G.f.: (theta_2(sqrt(x)) / (2 * x^(1/8)) - 1)^4, where theta_2() is the Jacobi theta function.
MAPLE
b:= proc(n, k) option remember; local r, t, d; r, t, d:= $0..2;
if n=0 then `if`(k=0, 1, 0) else
while t<=n do r:= r+b(n-t, k-1); t, d:= t+d, d+1 od; r fi
end:
a:= n-> b(n, 4):
seq(a(n), n=4..75); # Alois P. Heinz, Jan 31 2021
MATHEMATICA
nmax = 75; CoefficientList[Series[(EllipticTheta[2, 0, Sqrt[x]]/(2 x^(1/8)) - 1)^4, {x, 0, nmax}], x] // Drop[#, 4] &
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Jan 31 2021
STATUS
approved