login
A340816
Numbers k for which sigma(k^2)/k^2 reaches a new record, where sigma = A000203.
0
1, 2, 4, 6, 12, 24, 30, 60, 120, 180, 210, 360, 420, 840, 1260, 2520, 4620, 9240, 13860, 27720, 55440, 60060, 120120, 180180, 360360, 720720, 1441440, 1801800, 2042040, 3063060, 6126120, 12252240, 24504480, 30630600, 36756720, 38798760, 58198140, 116396280
OFFSET
1,2
COMMENTS
Appears to be almost identical to A308471.
EXAMPLE
a(1) = 1 with sigma(1^2)/1^2 = 1.
a(2) = 2 with sigma(2^2)/2^2 = 7/4 > 1.
3 is not in the sequence because sigma(3^2)/3^2 = 13/9 < 7/4.
a(3) = 4 with sigma(4^2)/4^2 = 31/16 > 7/4.
MAPLE
wmax:= 0: R:= NULL:
for n from 1 to 10^6 do
w:= numtheory:-sigma(n^2)/n^2;
if w > wmax then
wmax:= w; R:= R, n;
fi;
od:
R;
MATHEMATICA
DeleteDuplicates[Table[{k, DivisorSigma[1, k^2]/k^2}, {k, 31*10^5}], GreaterEqual[#1[[2]], #2[[2]]]&][[;; , 1]] (* The program generates the first 30 terms of the sequence. To generate more increase the k constant (now set at 31*10^5) but the program may take a long time to run. *) (* Harvey P. Dale, Sep 02 2023 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Robert Israel, Jan 22 2021
STATUS
approved