login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A282472
Numbers k where records occur for d(k^2)/d(k), where d(k) is A000005(k).
3
1, 2, 4, 6, 12, 24, 30, 60, 120, 180, 210, 420, 840, 1260, 2310, 4620, 9240, 13860, 27720, 30030, 60060, 120120, 180180, 360360, 510510, 1021020, 2042040, 3063060, 6126120, 9699690, 19399380, 38798760, 58198140, 116396280, 223092870, 446185740, 892371480
OFFSET
1,2
COMMENTS
First 14 terms are similar, with A168264.
The quotients are (1, 3/2, 5/3, 9/4, 5/2, 21/8, 27/8, 15/4, 63/16, 25/6, 81/16, 45/8, 189/32, 25/4, 243/32, 135/16, 567/64, 75/8, 315/32, 729/64, 405/32, 1701/128, 225/16, 945/64, 2187/128, 1215/64, 5103/256, 675/32, 2835/128, 6561/256, 3645/128, 15309/512, 2025/64, 8505/256, 19683/512,...). - Lars Blomberg, Apr 10 2017
LINKS
Amiram Eldar, Table of n, a(n) for n = 1..176 (terms 1..50 from Giovanni Resta)
MAPLE
A282472 := proc(n)
option remember;
local a, a1, rec ;
if n = 1 then
1;
else
a1 := procname(n-1) ;
rec := numtheory[tau](a1^2)/numtheory[tau](a1) ;
for a from a1+1 do
if numtheory[tau](a^2)/numtheory[tau](a) > rec then
return a;
end if;
end do:
end if;
end proc: # R. J. Mathar, Mar 03 2017
MATHEMATICA
s={}; rm=0; Do[r=DivisorSigma[0, n^2]/DivisorSigma[0, n]; If[r > rm, rm = r; AppendTo[s, n]], {n, 1, 10^4}]; s (* Amiram Eldar, Jul 17 2019 *)
PROG
(Perl)
use ntheory qw(:all);
for (my ($n, $m) = (1, 0) ; ; ++$n) {
my $d = divisors($n*$n) / divisors($n);
if ($m < $d) {
$m = $d;
print "$n\n";
}
}
(PARI) lista(nn) = {rec = 0; for (n=1, nn, if ((newrec = numdiv(n^2)/numdiv(n)) > rec, rec = newrec; print1(n, ", ")); ); } \\ Michel Marcus, Feb 20 2017
CROSSREFS
KEYWORD
nonn
AUTHOR
Daniel Suteu, Feb 18 2017
EXTENSIONS
a(32)-a(35) from Lars Blomberg, Apr 10 2017
a(36)-a(37) from Giovanni Resta, Apr 10 2017
STATUS
approved