login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A340382
Lexicographically earliest infinite sequence such that a(i) = a(j) => A278222(A291759(i)) = A278222(A291759(j)), for all i, j >= 1.
4
1, 2, 1, 2, 1, 3, 2, 2, 1, 2, 2, 4, 1, 3, 2, 2, 1, 2, 1, 2, 1, 4, 2, 4, 3, 5, 2, 4, 2, 5, 2, 2, 2, 2, 1, 2, 2, 3, 2, 2, 2, 2, 3, 4, 2, 3, 1, 4, 4, 6, 2, 6, 1, 7, 2, 4, 2, 4, 1, 6, 2, 4, 2, 2, 4, 3, 1, 2, 3, 3, 1, 2, 1, 6, 2, 4, 3, 4, 2, 2, 4, 4, 2, 2, 2, 6, 5, 4, 2, 4, 1, 4, 1, 8, 1, 4, 3, 9, 2, 6, 3, 6, 2, 6, 2
OFFSET
1,2
LINKS
PROG
(PARI)
up_to = 65537;
A003961(n) = my(f = factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); \\ From A003961
A048673(n) = (A003961(n)+1)/2;
A289814(n) = { my (d=digits(n, 3)); fromdigits(vector(#d, i, if (d[i]==2, 1, 0)), 2); } \\ From A289814
A005940(n) = { my(p=2, t=1); n--; until(!n\=2, if((n%2), (t*=p), p=nextprime(p+1))); (t); };
A046523(n) = { my(f=vecsort(factor(n)[, 2], , 4), p); prod(i=1, #f, (p=nextprime(p+1))^f[i]); }; \\ From A046523
A278222(n) = A046523(A005940(1+n));
rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om, invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om, invec[i], i); outvec[i] = u; u++ )); outvec; };
v340382 = rgs_transform(vector(up_to, n, A278222(A291759(n))));
A340382(n) = v340382[n];
CROSSREFS
Cf. A340377 (positions of ones).
Cf. also A305302.
Sequence in context: A193330 A147810 A305302 * A055181 A325568 A326195
KEYWORD
nonn
AUTHOR
Antti Karttunen, Jan 16 2021
STATUS
approved