login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A340367
Dirichlet inverse of sequence b(n) = 1-A318833(n).
4
-1, 0, 0, 2, 0, 7, 0, 6, 6, 13, 0, 13, 0, 19, 22, 10, 0, 19, 0, 23, 32, 31, 0, -3, 20, 37, 24, 33, 0, 21, 0, 6, 52, 49, 58, -36, 0, 55, 62, -9, 0, 29, 0, 53, 52, 67, 0, -87, 42, 53, 82, 63, 0, -29, 94, -15, 92, 85, 0, -219, 0, 91, 74, -22, 112, 45, 0, 83, 112, 45, 0, -257, 0, 109, 82, 93, 136, 53, 0, -165, 42, 121
OFFSET
1,4
LINKS
FORMULA
a(1) = -1, for n > 1, a(n) = Sum_{d|n, d<n} (1-A318833(n/d)) * a(d).
PROG
(PARI)
up_to = 65537;
DirInverseCorrect(v) = { my(u=vector(#v)); u[1] = (1/v[1]); for(n=2, #v, u[n] = (-u[1]*sumdiv(n, d, if(d<n, v[n/d]*u[d], 0)))); (u) }; \\ Compute the Dirichlet inverse of the sequence given in input vector v (correctly!)
A023900(n) = factorback(apply(p -> 1-p, factor(n)[, 1]));
A318833(n) = (n+A023900(n));
v340367 = DirInverseCorrect(vector(up_to, n, 1-A318833(n)));
A340367(n) = v340367[n];
(PARI)
\\ Or as:
A340367(n) = if(1==n, -1, sumdiv(n, d, if(d<n, (1-A318833(n/d))*A340367(d), 0)));
CROSSREFS
Cf. also A340140, A340197 for similar definitions.
Sequence in context: A021487 A369745 A197391 * A340197 A340140 A334341
KEYWORD
sign
AUTHOR
Antti Karttunen, Jan 05 2021
STATUS
approved