%I #6 Jan 06 2021 17:48:43
%S 1,1,1,1,1,1,1,1,1,1,1,1,1,1,9,1,1,1,1,1,35,1,1,1,1,1,1,1,1,9,1,1,13,
%T 1,11,1,1,1,21,1,1,35,1,1,5,1,1,1,1,1,49,1,1,1,3,1,49,1,1,9,1,1,27,1,
%U 17,13,1,1,13,11,1,1,1,1,55,1,55,21,1,1,1,1,1,35,7,1,21,1,1,5,7,1,875,1,27,1,1,1,121
%N a(n) = A005940(n) / gcd(A005940(n), A324106(n)), where A324106(n) is multiplicative with a(p^e) = A005940(p^e).
%C It is conjectured that A070776 gives the positions of all ones after the initial one. If that holds, then for all i, j: a(i) = a(j) => A340363(i) = A340363(j).
%H Antti Karttunen, <a href="/A340365/b340365.txt">Table of n, a(n) for n = 1..16384</a>
%F a(n) = A005940(n) / A340364(n) = A005940(n) / gcd(A005940(n), A324106(n)).
%o (PARI)
%o A005940(n) = { my(p=2, t=1); n--; until(!n\=2, if((n%2), (t*=p), p=nextprime(p+1))); t };
%o A324106(n) = { my(f=factor(n)); prod(i=1, #f~, A005940(f[i,1]^f[i,2])); };
%o A340365(n) = { my(t=A005940(n)); t / gcd(t, A324106(n)); };
%Y Cf. A005940, A070776, A324106, A340362, A340364, A340366.
%Y Cf. also A305800, A340363.
%K nonn
%O 1,15
%A _Antti Karttunen_, Jan 06 2021