login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A340176
Number of spanning trees in the halved Aztec diamond HMD_n.
4
1, 1, 4, 208, 121856, 772189440, 51989627289600, 36837279603595907072, 273129993621426778551615488, 21114078836429317912110529666154496, 16975032309392309949804839529585109326888960
OFFSET
0,3
COMMENTS
*---*
| |
*---* *---*---*---*
| | | | | |
*---* *---*---*---* *---*---*---*---*---*
HMD_1 HMD_2 HMD_3
-------------------------------------------------
*---*
| |
*---*---*---*
| | | |
*---*---*---*---*---*
| | | | | |
*---*---*---*---*---*---*---*
HMD_4
LINKS
FORMULA
a(n) = Product_{1<=j<k<=2*n-1 and j+k<=2*n-1} (4 - 4*cos(j*Pi/(2*n))*cos(k*Pi/(2*n))).
a(n) = 2^(n-1) * A007726(n) * A334089(n) = sqrt(A007341(n) * A334088(n) / n) for n > 0.
a(n) = 4^(n-1) * A340139(n) = 4^((n-1)^2) * Product_{1<=j<k<=n-1} (1 - cos(j*Pi/(2*n))^2 * cos(k*Pi/(2*n))^2) for n > 0. - Seiichi Manyama, Jan 02 2021
a(n) ~ sqrt(Gamma(1/4)) * exp(4*G*n^2/Pi) / (Pi^(3/8) * n^(3/4) * 2^(n - 1/4) * (1 + sqrt(2))^n), where G is Catalan's constant A006752. - Vaclav Kotesovec, Jan 05 2021
EXAMPLE
a(2) = 4;
* * *---* *---* *---*
| | | | | |
*---*---*---* *---*---*---* *---*---*---* *---* *---*
PROG
(PARI) default(realprecision, 120);
{a(n) = round(prod(j=1, 2*n-1, prod(k=j+1, 2*n-1-j, 4-4*cos(j*Pi/(2*n))*cos(k*Pi/(2*n)))))}
(PARI) {a007341(n) = polresultant(polchebyshev(n-1, 2, x/2), polchebyshev(n-1, 2, (4-x)/2))};
{a334088(n) = sqrtint(polresultant(polchebyshev(2*n, 1, x/2), polchebyshev(2*n, 1, I*x/2)))};
{a(n) = if(n==0, 1, sqrtint(a007341(n)*a334088(n)/n))}
(PARI) default(realprecision, 120);
{a(n) = if(n==0, 1, round(4^((n-1)^2)*prod(j=1, n-1, prod(k=j+1, n-1, 1-(cos(j*Pi/(2*n))*cos(k*Pi/(2*n)))^2))))} \\ Seiichi Manyama, Jan 02 2021
(Python)
# Using graphillion
from graphillion import GraphSet
def make_HMD(n):
s = 1
grids = []
for i in range(2 * n, 0, -2):
for j in range(i - 2):
a, b, c = s + j, s + j + 1, s + i + j
grids.extend([(a, b), (b, c)])
grids.append((s + i - 2, s + i - 1))
s += i
return grids
def A340176(n):
if n == 0: return 1
universe = make_HMD(n)
GraphSet.set_universe(universe)
spanning_trees = GraphSet.trees(is_spanning=True)
return spanning_trees.len()
print([A340176(n) for n in range(7)])
CROSSREFS
Cf. A007341, A007725, A007726, A334088, A334089, A340139, A340166, A340185 (halved Aztec diamond HOD_n).
Sequence in context: A201978 A081787 A293159 * A038790 A042325 A091287
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Dec 31 2020
STATUS
approved