login
A339862
Primes p such that p + sigma(p-1) is prime.
3
2, 7, 11, 13, 23, 31, 41, 43, 53, 59, 61, 67, 89, 97, 107, 109, 127, 131, 151, 167, 179, 181, 193, 211, 227, 233, 251, 263, 271, 283, 293, 307, 311, 313, 317, 353, 397, 409, 431, 439, 457, 487, 503, 523, 541, 563, 571, 599, 607, 613, 619, 631, 653, 659, 661, 673, 701, 709, 739, 743, 773, 787, 809
OFFSET
1,1
LINKS
EXAMPLE
a(3)=11 is a term because 11 is prime, sigma(11-1)=1+2+5+10=18, and 11+18=29 is prime.
MAPLE
select(t -> isprime(t) and isprime(t+numtheory:-sigma(t-1)), [2, seq(i, i=3..1000, 2)]);
MATHEMATICA
Select[Prime[Range[200]], PrimeQ[#+DivisorSigma[1, #-1]]&] (* Harvey P. Dale, Sep 08 2024 *)
CROSSREFS
Cf. A000203.
Sequence in context: A019346 A045369 A157975 * A045370 A117048 A040128
KEYWORD
nonn
AUTHOR
J. M. Bergot and Robert Israel, Dec 19 2020
STATUS
approved