



187, 243, 403, 423, 425, 427, 435, 583, 663, 729, 763, 775, 845, 891, 1003, 1083, 1125, 1265, 1267, 1375, 1395, 1419, 1545, 1573, 1575, 1615, 1643, 1645, 1755, 1771, 1813, 1843, 1885, 1925, 1953, 2035, 2275, 2385, 2403, 2523, 2525, 2533, 2635, 2673, 2695
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

Odd numbers k such that k and k+2 are both in A328897.
Despite the fact that only square numbers have an odd number of divisors, there are surprisingly many terms here. The numbers of terms below 10^3, 10^4 and 10^5 are 14, 208 and 3004 respectively.


LINKS



EXAMPLE

The smallest numbers with exactly 582, 583, 584, 585 and 586 divisors are ~3.565*10^30, ~2.659*10^20, ~4.958*10^24, 406425600 and ~2.387*10^88 respectively. We have A005179(582) > A005179(583) < A005179(584) > A005179(585) < A005179(586), hence 583 is a term.


PROG

(PARI) isA339863(k) = if(k%2&&k>1, my(v=vector(5, n, A005179(k2+n))); v[2]<v[1] && v[2]<v[3] && v[4]<v[3] && v[4]<v[5], 0)


CROSSREFS



KEYWORD

nonn


AUTHOR



STATUS

approved



