login
A339465
Primes p such that (p-1)/gpf(p-1) = 2^q * 3^r with q, r >= 1, where gpf(m) is the greatest prime factor of m, A006530.
4
19, 31, 37, 43, 61, 67, 73, 79, 103, 109, 127, 139, 157, 163, 181, 199, 223, 229, 241, 271, 277, 283, 307, 313, 337, 349, 367, 373, 379, 397, 409, 433, 439, 457, 487, 499, 523, 541, 577, 607, 613, 619, 643, 673, 709, 733, 739, 757, 787, 811, 823, 829, 853, 877, 907, 919
OFFSET
1,1
COMMENTS
Paul Erdős asked if there are infinitely many primes p such that (p-1)/A006530(p-1) = 2^k or = 2^q*3^r (see Richard K. Guy reference).
It is not known if this sequence is infinite.
Proposition: if prime p is a term, then p is of the form 6*m+1 (A002476).
REFERENCES
Richard K. Guy, Unsolved Problems in Number Theory, 3rd Edition, Springer, 2004, Section B46, p. 154.
LINKS
P. Erdős and C. Pomerance, On the largest prime factors of n and n+1, Aequationes Math. 17 (1978), pp. 311-321.
EXAMPLE
31 is prime, 30/5 = 6 = 2*3 hence 31 is a term.
37 is prime, 36/3 = 12 = 2^2*3 hence 37 is a term.
127 is prime, 126/7 = 18 = 2*3^2 hence 127 is a term.
MAPLE
alias(pf = NumberTheory:-PrimeFactors): gpf := n -> max(pf(n)):
is_a := n -> isprime(n) and pf((n-1)/gpf(n-1)) = {2, 3}:
select(is_a, [$3..919]); # Peter Luschny, Dec 13 2020
MATHEMATICA
q[n_] := PrimeQ[n] && Module[{f = FactorInteger[n - 1]}, (Length[f] == 2 && f[[2, 1]] == 3 && f[[2, 2]] > 1) || (Length[f] == 3 && f[[2, 1]] == 3 && f[[3, 2]] == 1)]; Select[Range[1000], q] (* Amiram Eldar, Dec 09 2020 *)
PROG
(Magma) s:=func<n|Max(PrimeDivisors(n))>; [p:p in PrimesInInterval(3, 1000)|PrimeDivisors(a) eq [2, 3] where a is (p-1) div s(p-1)]; // Marius A. Burtea, Dec 09 2020
CROSSREFS
Cf. A074781 (ratio=2^k), A339466 (ratio <> 2^k and <> 2^q*3^r).
Subsequence of A002476.
Sequence in context: A125148 A214798 A040066 * A279192 A159043 A040088
KEYWORD
nonn
AUTHOR
Bernard Schott, Dec 09 2020
EXTENSIONS
More terms from Marius A. Burtea, Dec 09 2020
STATUS
approved