OFFSET
1,1
COMMENTS
REFERENCES
Richard K. Guy, Unsolved Problems in Number Theory, 3rd Edition, Springer, 2004, Section B46, p. 154.
LINKS
P. Erdős and C. Pomerance, On the largest prime factors of n and n+1, Aequationes Math. 17 (1978), pp. 311-321.
EXAMPLE
31 is prime, 30/5 = 6 = 2*3 hence 31 is a term.
37 is prime, 36/3 = 12 = 2^2*3 hence 37 is a term.
127 is prime, 126/7 = 18 = 2*3^2 hence 127 is a term.
MAPLE
alias(pf = NumberTheory:-PrimeFactors): gpf := n -> max(pf(n)):
is_a := n -> isprime(n) and pf((n-1)/gpf(n-1)) = {2, 3}:
select(is_a, [$3..919]); # Peter Luschny, Dec 13 2020
MATHEMATICA
q[n_] := PrimeQ[n] && Module[{f = FactorInteger[n - 1]}, (Length[f] == 2 && f[[2, 1]] == 3 && f[[2, 2]] > 1) || (Length[f] == 3 && f[[2, 1]] == 3 && f[[3, 2]] == 1)]; Select[Range[1000], q] (* Amiram Eldar, Dec 09 2020 *)
PROG
(Magma) s:=func<n|Max(PrimeDivisors(n))>; [p:p in PrimesInInterval(3, 1000)|PrimeDivisors(a) eq [2, 3] where a is (p-1) div s(p-1)]; // Marius A. Burtea, Dec 09 2020
CROSSREFS
KEYWORD
nonn
AUTHOR
Bernard Schott, Dec 09 2020
EXTENSIONS
More terms from Marius A. Burtea, Dec 09 2020
STATUS
approved