login
A339421
Number of compositions (ordered partitions) of n into an odd number of cubes.
2
0, 1, 0, 1, 0, 1, 0, 1, 1, 1, 3, 1, 5, 1, 7, 1, 9, 4, 11, 11, 13, 22, 15, 37, 18, 56, 29, 80, 56, 109, 107, 142, 190, 184, 313, 255, 490, 391, 731, 644, 1045, 1082, 1458, 1792, 2044, 2895, 2957, 4531, 4463, 6863, 6972, 10126, 11090, 14739, 17691, 21484, 27954, 31741
OFFSET
0,11
FORMULA
G.f.: (1/2) * (1 / (1 - Sum_{k>=1} x^(k^3)) - 1 / Sum_{k>=0} x^(k^3)).
a(n) = (A023358(n) - A323633(n)) / 2.
a(n) = -Sum_{k=0..n-1} A023358(k) * A323633(n-k).
EXAMPLE
a(10) = 3 because we have [8, 1, 1], [1, 8, 1] and [1, 1, 8].
MAPLE
b:= proc(n, t) option remember; local r, f, g;
if n=0 then t else r, f, g:=$0..2; while f<=n
do r, f, g:= r+b(n-f, 1-t), f+3*g*(g-1)+1, g+1 od; r fi
end:
a:= n-> b(n, 0):
seq(a(n), n=0..60); # Alois P. Heinz, Dec 03 2020
MATHEMATICA
nmax = 57; CoefficientList[Series[(1/2) (1/(1 - Sum[x^(k^3), {k, 1, Floor[nmax^(1/3)] + 1}]) - 1/Sum[x^(k^3), {k, 0, Floor[nmax^(1/3)] + 1}]), {x, 0, nmax}], x]
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Dec 03 2020
STATUS
approved