OFFSET
0,5
COMMENTS
Up to n = 10^5, any integer generally appears 0, 1 or 2 times. Only 248, 428 and 806 appear 3 times and 1 appears 8 times.
Are there any numbers that appear 4, 5 or more times?
From Giovanni Resta, Apr 01 2019: (Start)
4 times: 15711971, 22606282, 22826268, ...
5 times: 42862042, 44464482, 82802082, ...
6 times: 224026426, 224028040, 224042062, ...
7 times: 242620882, 244220442, 260088080, ...
Therefore, the first terms that appear n times, with n >= 0, are 6, 0, 3, 248, 15711971, 42862042, 224026426, 242620882, 1, ... (End)
LINKS
Paolo P. Lava, Table of n, a(n) for n = 0..10000
FORMULA
a(2n+1) = total number of even digits from a(0) to a(2n).
a(2n+2) = total number of odd digits from a(0) to a(2n+1).
EXAMPLE
a(1) = 1 because there is only one even digit before a(1): a(0) = 0.
a(2) = 1 because there is only one odd digit before a(2): a(1) = 1. Etc.
MAPLE
P:=proc(q) local a, b, d, d1, k, n, p, p1; a:=[0]: p:=1; d:=0;
for n from 2 to q do a:=[op(a), p]: b:=[op(convert(p, base, 10))]:
p1:=0: d1:=0: for k from 1 to nops(b) do if b[k] mod 2=0
then p1:=p1+1: else d1:=d1+1: fi; od; d:=d+d1: p:=p+p1:
a:=[op(a), d]: b:=[op(convert(d, base, 10))]: p1:=0: d1:=0:
for k from 1 to nops(b) do if b[k] mod 2=0 then p1:=p1+1:
else d1:=d1+1: fi; od; d:=d+d1: p:=p+p1: od; op(a); end: P(35);
PROG
(PARI) nb = [0, 0]; for (n=1, 71, print1 (v=nb[1+n%2]", "); apply(d -> nb[1+d%2]++, if (v, digits(v), [0]))) \\ Rémy Sigrist, May 04 2019
CROSSREFS
KEYWORD
nonn,base,easy
AUTHOR
Paolo P. Lava, Mar 27 2019
STATUS
approved