login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A339198
Number of (undirected) cycles on the n X 4 king graph.
4
85, 3459, 136597, 4847163, 171903334, 6109759868, 217211571195, 7721452793328, 274480808918598, 9757216290644264, 346848710800215246, 12329747938579785459, 438296805656767232863, 15580536695961884270466, 553855562644922140772689, 19688409342958501534182423
OFFSET
2,1
LINKS
Eric Weisstein's World of Mathematics, Graph Cycle
Eric Weisstein's World of Mathematics, King Graph
FORMULA
Empirical g.f.: x^2 * (-336*x^16 - 360*x^15 + 187*x^14 - 4505*x^13 + 12123*x^12 + 14959*x^11 - 65728*x^10 + 50979*x^9 - 52680*x^8 + 26849*x^7 + 179877*x^6 + 22927*x^5 - 222548*x^4 + 1318*x^3 + 14878*x^2 + 399*x + 85) / ((x-1)^2 * (112*x^16 + 8*x^15 - 217*x^14 + 904*x^13 - 2866*x^12 + 1756*x^11 + 7818*x^10 - 22167*x^9 + 45698*x^8 - 61238*x^7 + 8041*x^6 + 31909*x^5 - 5819*x^4 - 538*x^3 - 36*x^2 - 34*x + 1)). - Vaclav Kotesovec, Dec 09 2020
PROG
(Python)
# Using graphillion
from graphillion import GraphSet
def make_nXk_king_graph(n, k):
grids = []
for i in range(1, k + 1):
for j in range(1, n):
grids.append((i + (j - 1) * k, i + j * k))
if i < k:
grids.append((i + (j - 1) * k, i + j * k + 1))
if i > 1:
grids.append((i + (j - 1) * k, i + j * k - 1))
for i in range(1, k * n, k):
for j in range(1, k):
grids.append((i + j - 1, i + j))
return grids
def A339098(n, k):
universe = make_nXk_king_graph(n, k)
GraphSet.set_universe(universe)
cycles = GraphSet.cycles()
return cycles.len()
def A339198(n):
return A339098(n, 4)
print([A339198(n) for n in range(2, 20)])
CROSSREFS
Column 4 of A339098.
Cf. A339201.
Sequence in context: A157110 A076463 A281162 * A017801 A201799 A017748
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Nov 27 2020
STATUS
approved