login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A339098
Square array T(n,k), n >= 2, k >= 2, read by antidiagonals, where T(n,k) is the number of (undirected) cycles on the n X k king graph.
7
7, 30, 30, 85, 348, 85, 204, 3459, 3459, 204, 451, 33145, 136597, 33145, 451, 954, 316164, 4847163, 4847163, 316164, 954, 1969, 3013590, 171903334, 545217435, 171903334, 3013590, 1969, 4008, 28722567, 6109759868, 61575093671, 61575093671, 6109759868, 28722567, 4008
OFFSET
2,1
LINKS
Eric Weisstein's World of Mathematics, Graph Cycle
Eric Weisstein's World of Mathematics, King Graph
FORMULA
T(n,k) = T(k,n).
EXAMPLE
Square array T(n,k) begins:
7, 30, 85, 204, 451, ...
30, 348, 3459, 33145, 316164, ...
85, 3459, 136597, 4847163, 171903334, ...
204, 33145, 4847163, 545217435, 61575093671, ...
451, 316164, 171903334, 61575093671, 21964731190911, ...
PROG
(Python)
# Using graphillion
from graphillion import GraphSet
def make_nXk_king_graph(n, k):
grids = []
for i in range(1, k + 1):
for j in range(1, n):
grids.append((i + (j - 1) * k, i + j * k))
if i < k:
grids.append((i + (j - 1) * k, i + j * k + 1))
if i > 1:
grids.append((i + (j - 1) * k, i + j * k - 1))
for i in range(1, k * n, k):
for j in range(1, k):
grids.append((i + j - 1, i + j))
return grids
def A339098(n, k):
universe = make_nXk_king_graph(n, k)
GraphSet.set_universe(universe)
cycles = GraphSet.cycles()
return cycles.len()
print([A339098(j + 2, i - j + 2) for i in range(9 - 1) for j in range(i + 1)])
CROSSREFS
Rows and columns 2..5 give A339196, A339197, A339198, A339199.
Main diagonal gives A234622.
Sequence in context: A157422 A061644 A053621 * A210107 A266604 A018831
KEYWORD
nonn,tabl
AUTHOR
Seiichi Manyama, Nov 27 2020
STATUS
approved