login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A339140
Number of (undirected) cycles in the graph C_n X P_n.
5
6, 63, 1540, 119235, 29059380, 21898886793, 50826232189144, 361947451544923557, 7884768474166076906420, 524518303312357729182869149, 106448798893410608983300257207398, 65866487708413725073741586390176988083, 124207126413825808953168887580780401519104028
OFFSET
2,1
LINKS
Eric Weisstein's World of Mathematics, Graph Cycle
EXAMPLE
If we represent each vertex with o, used edges with lines and unused edges with dots, and repeat the wraparound edges on left and right, the a(2) = 6 solutions for n = 2 are:
.o-o. -o.o- .o-o. -o.o- -o-o- .o.o.
| | | | | | | | . . . .
.o-o. .o-o. -o.o- -o.o- .o.o. -o-o-
PROG
(Python)
# Using graphillion
from graphillion import GraphSet
def make_CnXPk(n, k):
grids = []
for i in range(1, k + 1):
for j in range(1, n):
grids.append((i + (j - 1) * k, i + j * k))
grids.append((i + (n - 1) * k, i))
for i in range(1, k * n, k):
for j in range(1, k):
grids.append((i + j - 1, i + j))
return grids
def A339140(n):
universe = make_CnXPk(n, n)
GraphSet.set_universe(universe)
cycles = GraphSet.cycles()
return cycles.len()
print([A339140(n) for n in range(3, 7)])
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Nov 25 2020
EXTENSIONS
a(10) and a(12) from Seiichi Manyama, Nov 25 2020
a(2), a(9), a(11) and a(13)-a(18) from Ed Wynn, Jun 25 2023
STATUS
approved