login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A218383
Number of nonempty subsets S of the powerset of a set of size n, that have the odd intersection property.
2
1, 6, 63, 2880, 1942305, 270460574370, 2342736463012620110115, 86772003564839307585762726826882765841700, 59169757600268575861444773339439520868680468342509442047838072019506515900898085
OFFSET
1,2
COMMENTS
A being a set, S belonging to P(P(A)) \ {{}} has the odd intersection property (oip) if there exists a set B (necessarily nonempty) included in A with |B∩s| odd for each s in S.
For instance for S={{1}, {1,2}} of A={1,2}, let's take B={1}, then |{1}∩{1}|=1 (odd) and |{1}∩{1,2}|=1 (odd), so S has oip.
LINKS
V. Scharaschkin, The Odd and Even Intersection Properties, The Electronic Journal of Combinatorics, Volume 18, Issue 1 (2011), #P185.
Steve Wright, Some enumerative combinatorics arising from a problem on quadratic nonresidues, Australas. J. Combin. 44 (2009), 301-315.
FORMULA
a(n) = sum(i=0, n-1, ((-1)^(n-i-1))*(2^(2^i)-1)*prod(j=1,i,(2^(n-j+1)-1)/ (2^j-1)) * prod(j=1,n-i,2^j-1)).
EXAMPLE
For |A|=2, A = {1,2} and P(A) = {{}, {1}, {2}, {1,2}}
S can be
{{}, {1}, {2}, {1,2}}
{{}, {1}, {2}}
{{}, {1}, {1,2}}
{{}, {2}, {1,2}}
{{1}, {2}, {1,2}}
{{}, {1}}
{{}, {2}}
{{}, {1,2}}
{{1}, {1,2}} has oip, with B={1}
{{2}, {1,2}} has oip, with B={2}
{{1},{2}} has oip, with B={1, 2}
{{}}
{{1}} has oip, with B={1}
{{2}} has oip, with B={2}
{{1,2}} has oip, with B={1}
So we have 6 S with oip.
PROG
(PARI) d(m) = {for (n=1, m, v = sum(i=0, n-1, ((-1)^(n-i-1))*(2^(2^i)-1)* prod(j=1, i, (2^(n-j+1)-1)/(2^j-1))*prod(j=1, n-i, 2^j-1)); print1(v, ", "); ); }
(Maxima) A218383[n]:=sum(((-1)^(n-i-1))*(2^(2^i)-1)*prod((2^(n-j+1)-1)/(2^j-1), j, 1, i)* prod(2^j-1, j, 1, n-i), i, 0, n-1)$ makelist(A218383[n], n, 1, 9); /* Martin Ettl, Oct 30 2012 */
CROSSREFS
Cf. A218384.
Sequence in context: A249590 A034665 A339140 * A222596 A067447 A083225
KEYWORD
nonn
AUTHOR
Michel Marcus, Oct 27 2012
STATUS
approved