login
A338946
Lengths of Cunningham chains of the second kind that are sorted by first prime in the chain.
3
3, 2, 1, 1, 3, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 3, 2, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 2, 2, 1, 3, 1, 1, 1, 1, 1, 1
OFFSET
1,1
COMMENTS
Row lengths of A338944.
LINKS
Chris K. Caldwell, Cunningham Chain (PrimePages, Prime Glossary).
Wikipedia, Cunningham chain.
EXAMPLE
We start with p = 2. Since 2(2) - 1 = 3 is prime, and further 2(3) - 1 = 5 is prime, but 2(5) - 1 is composite, we have chain length 3, so a(1) = 3.
p = 7 is the smallest prime that hasn't appeared in a chain thus far; since 2(7) - 1 = 13 is prime but 2(13) - 1 = 25 is composite, we have a chain of length 2, so a(2) = 2.
p = 11 is the smallest prime that hasn't appeared in a chain; 2(11) - 1 = 21 is composite, so we have a singleton chain, thus a(3) = 1, etc.
MATHEMATICA
Block[{a = {2}, b = {}, j = 0, k, p}, Do[k = Length@ b + 1; If[PrimeQ@ a[[-1]], AppendTo[a, 2 a[[-1]] - 1]; j++, While[! FreeQ[a, Set[p, Prime[k]]], k++]; AppendTo[b, j]; Set[j, 0]; Set[a, Append[a[[1 ;; -2]], p]]], 10^3}; b]
CROSSREFS
KEYWORD
nonn
AUTHOR
Michael De Vlieger, Nov 17 2020
STATUS
approved