login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A344893
Fixed point of the morphism 1->1321, 2->0021, 3->1300, 0->0000 starting from 1.
3
1, 3, 2, 1, 1, 3, 0, 0, 0, 0, 2, 1, 1, 3, 2, 1, 1, 3, 2, 1, 1, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 1, 1, 3, 2, 1, 1, 3, 2, 1, 1, 3, 0, 0, 0, 0, 2, 1, 1, 3, 2, 1, 1, 3, 2, 1, 1, 3, 0, 0, 0, 0, 2, 1, 1, 3, 2, 1, 1, 3, 2, 1, 1, 3, 0
OFFSET
0,2
COMMENTS
Loxton and van der Poorten give this morphism as a way to identify those n which can be represented in base 4 using only digits -1,0,+1 (A006288): n is a term of A006288 iff a(n) = 1 or 3.
LINKS
John Loxton and Alf van der Poorten, Arithmetic Properties of Automata: Regular Sequences, Journal für die Reine und Angewandte Mathematik, volume 392, 1988, pages 57-69. Also second author's copy. Section 1 example beta_n = a(n).
FORMULA
a(n) = 0 if n in base 4 has a digit pair 12, 13, 20, or 21; otherwise a(n) = 1,3,2,1 according as n == 0,1,2,3 (mod 4).
MATHEMATICA
Nest[Flatten[ReplaceAll[#, {0->{0, 0, 0, 0}, 1->{1, 3, 2, 1}, 2->{0, 0, 2, 1}, 3->{1, 3, 0, 0}}]]&, {1}, 4] (* Paolo Xausa, Nov 09 2023 *)
PROG
(PARI) my(table=[9, 8, 9, 0, 0, 8, 6, 2, 4]); a(n) = my(s=2); if(n, forstep(i=bitor(logint(n, 2), 1), 0, -1, (s=table[s-bittest(n, i)])||break)); s>>1;
CROSSREFS
Cf. A006288, A344892, A007090 (base 4).
Sequence in context: A316456 A370060 A375747 * A338946 A083716 A231820
KEYWORD
nonn,easy
AUTHOR
Kevin Ryde, Jun 01 2021
STATUS
approved