OFFSET
1,1
COMMENTS
Considering the 10^6 sexy prime pairs from (5,11) to (115539653,115539659), we note the following:
65340 sequence terms (6.5%) are linked to a distance between two consecutive sexy prime pairs which is a square.
List of the 16 classes of distances which are squares: 4,16,36,64,100,144,196,256,324,400,484,576,676,784,900,1024.
The frequency of the distances which are squares decreases when their size increases, with a noticeable higher frequency for the distance 36.
First 20 distances which are squares with in parentheses the subtraction of the smallest members of the related two consecutive sexy prime pairs: 4 (11-7), 4 (17-13),4 (41-37),4 (101-97),4 (107-103),4 (227-223),4 (311-307), 16 (347-331),4 (461-457),16 (557-541),16 (587-571),4 (857-853), 4 (881-877), 4 (1091-1087),4 (1301-1297),4 (1427-1423),4 (1487-1483),36 (1657-1621), 4 (1871-1867),4 (1997-1993).
LINKS
Robert Israel, Table of n, a(n) for n = 1..10000
EXAMPLE
a(2)=13 is in the sequence because the two consecutive sexy prime pairs being (13,19) and (17,23),the distance between them is 17-13=4 which is a square (2^2).
73 is not in the sequence because the two consecutive sexy prime pairs being (73,79) and (83,89),the distance between them is 83-73=10 which is not a square.
MAPLE
count:= 0: sp:= 5: R:= NULL:
p:= sp;
while count < 100 do
p:= nextprime(p);
if isprime(p+6) then
d:= p - sp;
if issqr(d) then
count:= count+1; R:= R, sp;
fi;
sp:= p;
fi;
od:
R; # Robert Israel, May 08 2024
PROG
(R)
primes<-generate_n_primes(7000000)
Matrix_1<-matrix(c(primes), nrow=7000000, ncol=1, byrow=TRUE)
p1<-c(0)
p2<-c(0)
k<-c(0)
distance<-c(0)
distance_square<-(0)
Matrix_2<-cbind(Matrix_1, p1, p2, k, distance, distance_square)
counter=0
j=1
while(j<= 7000000){
p<-(Matrix_2[j, 1])+6
if(is_prime(p)){
counter=counter+1
Matrix_2[counter, 2]<-(p-6)
Matrix_2[counter, 3]<-p
}
j=j+1
}
a_n<-c()
k=1
while(k<=1000000){
Matrix_2[k, 4]<-k
dist<-Matrix_2[k+1, 2]-Matrix_2[k, 2]
Matrix_2[k, 5]<-dist
if(sqrt(dist)%%1==0){
Matrix_2[k, 6]<-dist
a_n<-append(a_n, Matrix_2[k, 2])
}
k=k+1
}
View(Matrix_2)
View(a_n)
(PARI) lista(nn) = {my(vs = select(x->(isprime(x) && isprime(x+6)), [1..nn]), vd = vector(#vs-1, k, vs[k+1] - vs[k]), vk = select(issquare, vd, 1)); vector(#vk, k, vs[vk[k]]); } \\ Michel Marcus, Nov 14 2020
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Claude H. R. Dequatre, Nov 10 2020
STATUS
approved