login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A338813
Triangle T(n,k) defined by Sum_{k=1..n} T(n,k)*u^k*x^n/n! = Product_{j>0} (1+x^j)^(u/j).
2
1, 0, 1, 4, 0, 1, -6, 16, 0, 1, 48, -30, 40, 0, 1, 0, 448, -90, 80, 0, 1, 1440, -840, 2128, -210, 140, 0, 1, -10080, 23532, -6720, 7168, -420, 224, 0, 1, 120960, -127008, 177868, -30240, 19488, -756, 336, 0, 1, 0, 2191104, -1018080, 892540, -100800, 45696, -1260, 480, 0, 1
OFFSET
1,4
COMMENTS
Also the Bell transform of A338814.
LINKS
Peter Luschny, The Bell transform.
FORMULA
E.g.f.: exp(Sum_{n>0} u*A048272(n)*x^n/n).
T(n; u) = Sum_{k=1..n} T(n, k)*u^k is given by T(n; u) = u * (n-1)! * Sum_{k=1..n} A048272(k)*T(n-k; u)/(n-k)!, T(0; u) = 1.
T(n, k) = (n!/k!) * Sum_{i_1,i_2,...,i_k > 0 and i_1+i_2+...+i_k=n} Product_{j=1..k} A048272(i_j)/i_j.
EXAMPLE
exp(Sum_{n>0} u*A048272(n)*x^n/n) = 1 + u*x + u^2*x^2/2! + (4*u+u^3)*x^3/3! + ... .
Triangle begins:
1;
0, 1;
4, 0, 1;
-6, 16, 0, 1;
48, -30, 40, 0, 1;
0, 448, -90, 80, 0, 1;
1440, -840, 2128, -210, 140, 0, 1;
-10080, 23532, -6720, 7168, -420, 224, 0, 1;
...
MATHEMATICA
a[n_] := a[n] = If[n == 0, 0, (n - 1)! * DivisorSum[n, (-1)^(# + 1) &]]; T[n_, k_] := T[n, k] = If[k == 0, Boole[n == 0], Sum[a[j] * Binomial[n - 1, j - 1] * T[n - j, k - 1], {j, 0, n - k + 1}]]; Table[T[n, k], {n, 1, 10}, {k, 1, n}] // Flatten (* Amiram Eldar, Apr 28 2021 *)
PROG
(PARI) {T(n, k) = my(u='u); n!*polcoef(polcoef(prod(j=1, n, (1+x^j+x*O(x^n))^(u/j)), n), k)}
(PARI) a(n) = if(n<1, 0, (n-1)!*sumdiv(n, d, (-1)^(d+1)));
T(n, k) = if(k==0, 0^n, sum(j=0, n-k+1, binomial(n-1, j-1)*a(j)*T(n-j, k-1)))
CROSSREFS
Column k=1 gives A338814.
Row sums give A168243.
Sequence in context: A092746 A097898 A154884 * A334385 A201560 A255644
KEYWORD
sign,tabl
AUTHOR
Seiichi Manyama, Nov 10 2020
STATUS
approved