login
A338784
a(n) is the smallest number with exactly n divisors such that all its divisors end with the same digit (which is necessarily 1).
2
1, 11, 121, 341, 14641, 3751, 1771561, 13981, 116281, 453871, 25937424601, 153791, 3138428376721, 54918391, 14070001, 852841, 45949729863572161, 4767521, 5559917313492231481, 18608711, 1702470121, 804060162631, 81402749386839761113321, 9381251, 13521270961, 97291279678351, 195468361
OFFSET
1,2
COMMENTS
As 1 is a divisor for each number, all the divisors must end with 1.
FORMULA
If n is prime p, then a(p) = 11^(p-1) = A001020(p-1).
For k>=1, a(2^k) = {Product_m=1..k} A030430(m) = A092609(k).
EXAMPLE
121 is the smallest number whose 3 divisors (1, 11, 121) end with 1, hence a(3) = 121.
3751 is the smallest number whose 6 divisors (1, 11, 31, 121, 341, 3751) end with 1, hence a(6) = 121.
a(18) = 4767521 = 11^2 * 31^2 * 41 as it has 18 divisors all of which end in 1. - David A. Corneth, Nov 09 2020
PROG
(PARI) a(n) = {my(pr); if(n==1, return(1)); if(isprime(n), return(11^(n-1))); forstep(i = 1, oo, 10, f = factor(i); if(numdiv(f) == n, pr = 1; for(j = 1, #f~, if(f[j, 1]%10 != 1, pr = 0; next(2) ) ) ); if(pr, return(i)); ) } \\ David A. Corneth, Nov 09 2020
CROSSREFS
Subsequence of A004615.
Sequence in context: A223223 A240942 A216131 * A223392 A262468 A221964
KEYWORD
nonn,base
AUTHOR
Bernard Schott, Nov 09 2020
EXTENSIONS
Data corrected by David A. Corneth, Nov 09 2020
STATUS
approved