OFFSET
1,2
COMMENTS
As 1 is a divisor for each number, all the divisors must end with 1.
LINKS
David A. Corneth, Table of n, a(n) for n = 1..966
Project Euler, Problem 474: Last digits of divisors.
FORMULA
EXAMPLE
121 is the smallest number whose 3 divisors (1, 11, 121) end with 1, hence a(3) = 121.
3751 is the smallest number whose 6 divisors (1, 11, 31, 121, 341, 3751) end with 1, hence a(6) = 121.
a(18) = 4767521 = 11^2 * 31^2 * 41 as it has 18 divisors all of which end in 1. - David A. Corneth, Nov 09 2020
PROG
(PARI) a(n) = {my(pr); if(n==1, return(1)); if(isprime(n), return(11^(n-1))); forstep(i = 1, oo, 10, f = factor(i); if(numdiv(f) == n, pr = 1; for(j = 1, #f~, if(f[j, 1]%10 != 1, pr = 0; next(2) ) ) ); if(pr, return(i)); ) } \\ David A. Corneth, Nov 09 2020
CROSSREFS
KEYWORD
nonn,base
AUTHOR
Bernard Schott, Nov 09 2020
EXTENSIONS
Data corrected by David A. Corneth, Nov 09 2020
STATUS
approved