login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A338541
Numbers having exactly four non-unitary prime factors.
4
44100, 88200, 108900, 132300, 152100, 176400, 213444, 217800, 220500, 260100, 264600, 298116, 304200, 308700, 324900, 326700, 352800, 396900, 426888, 435600, 441000, 456300, 476100, 485100, 509796, 520200, 529200, 544500, 573300, 592900, 596232, 608400, 617400
OFFSET
1,1
COMMENTS
Numbers k such that A056170(k) = A001221(A057521(k)) = 4.
Numbers divisible by the squares of exactly four distinct primes.
The asymptotic density of this sequence is (eta_1^4 - 6*eta_1^2*eta_2 + 3*eta_2^2 + 8*eta_1*eta_3 - 6*eta_4)/(4*Pi^2) = 0.0000970457..., where eta_j = Sum_{p prime} 1/(p^2-1)^j (Pomerance and Schinzel, 2011).
LINKS
Carl Pomerance and Andrzej Schinzel, Multiplicative Properties of Sets of Residues, Moscow Journal of Combinatorics and Number Theory, Vol. 1, No. 1 (2011), pp. 52-66. See pp. 61-62.
EXAMPLE
44100 = 2^2 * 3^2 * 5^2 * 7^2 is a term since it has exactly 4 prime factors, 2, 3, 5 and 7, that are non-unitary.
MATHEMATICA
Select[Range[620000], Count[FactorInteger[#][[;; , 2]], _?(#1 > 1 &)] == 4 &]
CROSSREFS
Subsequence of A013929 and A318720.
Cf. A154945 (eta_1), A324833 (eta_2), A324834 (eta_3), A324835 (eta_4).
Sequence in context: A378097 A359127 A223457 * A190377 A049205 A234426
KEYWORD
nonn
AUTHOR
Amiram Eldar, Nov 01 2020
STATUS
approved