login
A338452
Numbers k such that k and k+1 have the same total binary weight of their divisors (A093653).
7
3, 4, 7, 20, 31, 57, 94, 98, 118, 122, 127, 201, 213, 218, 230, 242, 243, 244, 334, 384, 393, 423, 429, 481, 565, 603, 633, 694, 704, 729, 766, 844, 921, 1138, 1141, 1221, 1262, 1401, 1533, 1654, 1726, 1761, 1837, 1838, 1862, 1882, 1942, 2162, 2245, 2361, 2362
OFFSET
1,1
COMMENTS
Numbers k such that A093653(k) = A093653(k+1).
The Mersenne primes (A000668) are terms since if 2^p - 1 is a prime then A093653(2^p-1) = A093653(2^p) = p+1.
LINKS
EXAMPLE
3 is a term since A093653(3) = A093653(4) = 3.
MATHEMATICA
f[n_] := DivisorSum[n, DigitCount[#, 2, 1] &]; s = {}; f1 = f[1]; Do[f2 = f[n]; If[f1 == f2, AppendTo[s, n - 1]]; f1 = f2, {n, 2, 240}]; s
CROSSREFS
A000668 is a subsequence.
Sequence in context: A169892 A246805 A241660 * A030724 A124082 A056655
KEYWORD
nonn,base
AUTHOR
Amiram Eldar, Oct 28 2020
STATUS
approved