login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A124082
Numbers k such that prime(k)!/prime(k)# - 1 is prime.
1
3, 4, 7, 21, 60
OFFSET
1,1
COMMENTS
No more terms through 1000. - Ryan Propper, Jan 27 2007
No more terms through 2500. - Michael S. Branicky, Oct 02 2024
EXAMPLE
1*2*3*4*5/(2*3*5) - 1 = 3, a prime, so a(1)=3 as 5=prime(3);
1*2*3*4*5*6*7/(2*3*5*7) - 1 = 23, a prime, so a(2)=4 as 7=prime(4);
1*2*3*4*5*6*7*8*9*10*11*12*13*14*15*16*17/(2*3*5*7*11*13*17) - 1 = 696729599, a prime, so a(3)=7 as 17=prime(7).
MATHEMATICA
Primorial[n_] := Times @@ Select[Range[n], PrimeQ]; Do[k = Prime[n]; If[PrimeQ[k!/Primorial[k] - 1], Print[n]], {n, 10^3}] (* Ryan Propper, Jan 27 2007 *)
With[{nn=70}, Position[#[[1]]/#[[2]]-1&/@Thread[{Prime[Range[ nn]]!, FoldList[ Times, Prime[Range[nn]]]}], _?PrimeQ]//Flatten] (* Harvey P. Dale, Jul 01 2020 *)
PROG
(PARI) isok(k) = isprime(prime(k)!/prod(i=1, k, prime(i)) - 1); \\ Michel Marcus, Sep 15 2019
CROSSREFS
Cf. A092435 (p!/p#), A124083.
Sequence in context: A241660 A338452 A030724 * A056655 A341810 A338511
KEYWORD
more,nonn
AUTHOR
Pierre CAMI, Nov 25 2006
STATUS
approved