OFFSET
1,1
COMMENTS
The map k -> k*tau(k) = m is not injective (A038040) and this sequence lists, in increasing order of m, the preimages of the integers m that have more than one preimage.
REFERENCES
Richard K. Guy, Unsolved Problems in Number Theory, 3rd Edition, Springer, 2004, Section B12, p. 102-103.
D. Wells, The Penguin Dictionary of Curious and Interesting Numbers, Revised Edition, Penguin Books, London, England, 1997, entry 168, page 127.
EXAMPLE
The table begins:
18, 27;
24, 32;
56, 64;
90, 135;
126, 189;
120, 160;
198, 297;
168, 192, 224;
...
1st row is (18, 27) because 18 * tau(18) = 27 * tau(27) = 108 = A338382(1).
2nd row is (24, 32) because 24 * tau(24) = 32 * tau(32) = 192 = A338382(2).
8th row is (168, 192, 224), because 168 * tau(168) = 192 * tau(192) = 224 * tau(224) = 2688 = A338382(8); it is the first row with 3 preimages.
PROG
(PARI) upto(n) = {m = Map(); res = List(); n = n\2; w = []; for(i = 1, n, c = i*numdiv(i); if(mapisdefined(m, c), listput(res, c); l = mapget(m, c); listput(l, i); mapput(m, c, l) , mapput(m, c, List(i)); ) ); listsort(res, 1); v = select(x -> x <= 2*(n+1), res); for(i = 1, #v, w = concat(w, Vec(mapget(m, v[i]))) ); w; } \\ Michel Marcus, Oct 27 2020
CROSSREFS
KEYWORD
nonn,tabf
AUTHOR
Bernard Schott, Oct 26 2020
STATUS
approved