login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A167336
Totally multiplicative sequence with a(p) = 2*(4p+1) = 8p+2 for prime p.
1
1, 18, 26, 324, 42, 468, 58, 5832, 676, 756, 90, 8424, 106, 1044, 1092, 104976, 138, 12168, 154, 13608, 1508, 1620, 186, 151632, 1764, 1908, 17576, 18792, 234, 19656, 250, 1889568, 2340, 2484, 2436, 219024, 298, 2772, 2756, 244944, 330, 27144, 346
OFFSET
1,2
LINKS
FORMULA
Multiplicative with a(p^e) = (2*(4p+1))^e. If n = Product p(k)^e(k) then a(n) = Product (2*(4*p(k)+1))^e(k).
a(n) = A061142(n) * A166662(n) = 2^bigomega(n) * A166662(n) = 2^A001222(n) * A166662(n).
MATHEMATICA
a[1] = 1; a[n_] := (fi = FactorInteger[n]; Times @@ ((4*fi[[All, 1]] + 1)^fi[[All, 2]])); Table[a[n]*2^PrimeOmega[n], {n, 1, 100}] (* G. C. Greubel, Jun 06 2016 *)
f[p_, e_] := (8*p+2)^e; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Oct 19 2023 *)
CROSSREFS
KEYWORD
nonn,easy,mult
AUTHOR
Jaroslav Krizek, Nov 01 2009
STATUS
approved