login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A338267
a(n) is the nearest integer to the area of a triangle with sides prime(n), prime(n+1), prime(n+2).
3
0, 6, 13, 38, 71, 108, 159, 218, 317, 436, 550, 697, 817, 961, 1185, 1425, 1667, 1884, 2134, 2377, 2635, 3009, 3438, 3931, 4351, 4645, 4888, 5200, 5778, 6548, 7485, 7955, 8653, 9238, 10033, 10642, 11389, 12151, 12928, 13653, 14570, 15324, 16233, 16683, 17676, 19153, 20963, 22174, 22832, 23620
OFFSET
1,2
COMMENTS
It appears that the area is rational only for n=1.
LINKS
FORMULA
a(n) = round(sqrt(s*(s-prime(n))*(s-prime(n+1))*(s-prime(n+2)))) where s = (prime(n)+prime(n+1)+prime(n+2))/2.
a(n) = round(sqrt((3/16)*A330096(n))). - Hugo Pfoertner, Oct 19 2020
EXAMPLE
a(3)=13 because the third, fourth and fifth primes are 5,7,11, the area of a triangle with sides 5, 7, 11 is 3*sqrt(299)/4, and the nearest integer to that is 13.
MAPLE
atr:= proc(p, q, r) local s; s:= (p+q+r)/2; sqrt(s*(s-p)*(s-q)*(s-r)) end proc:
P:= [seq(ithprime(i), i=1..102)]:
seq(round(atr(P[i], P[i+1], P[i+2])), i=1..100);
MATHEMATICA
aTr[{a_, b_, c_}]:=Module[{s=(a+b+c)/2}, Round[Sqrt[s(s-a)(s-b)(s-c)]]]; aTr/@Partition[Prime[ Range[ 60]], 3, 1] (* Harvey P. Dale, Dec 14 2023 *)
PROG
(Python)
from sympy import prime, integer_nthroot
def A338267(n):
p, q, r = prime(n)**2, prime(n+1)**2, prime(n+2)**2
return (integer_nthroot(4*p*q-(p+q-r)**2, 2)[0]+2)//4 # Chai Wah Wu, Oct 19 2020
CROSSREFS
KEYWORD
nonn
AUTHOR
Robert Israel, Oct 19 2020
STATUS
approved