The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A216508 a(n) = 13*a(n-1) - 65*a(n-2) + 156*a(n-3) - 182*a(n-4) + 91*a(n-5) - 13*a(n-6). 7
 6, 13, 39, 130, 455, 1638, 6006, 22308, 83655, 316030, 1200914, 4585308, 17577014, 67603887, 260757536, 1008258225, 3906958055, 15167837542, 58983478554, 229708325847, 895760071050, 3497141791455, 13667427167576, 53464307173927, 209315686335366, 820090746381088, 3215215287887889 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,1 COMMENTS a(n) is equal to the rational part of 2*X(2*n) (with respect to the field Q(sqrt(13))), where X(n) = sqrt((13 + 3*sqrt(13))/2)*X(n-1) - sqrt(13)*X(n-2) + sqrt((13 - 3*sqrt(13))/2)*X(n-3), with X(0)=3, X(1)=sqrt((13 + 3*sqrt(13))/2), and X(2)=(13 - sqrt(13))/2. The Berndt-type sequence number 3 for the argument 2Pi/13 defined by the relation a(n) + A216597(n)*sqrt(13) = 2*X(2*n), where X(n) := s(2)^n + s(5)^n + s(6)^n, where s(j) := 2*sin(2*Pi*j/13). We note that all numbers of the form a(6*n+k)*13^(-n), where k = 1,...,6, n = 0,1,... are integers, and even the number a(13)*13^(-4) is integer. a(n) is also equal to the rational part of 2*Y(2*n) (with respect to the field Q(sqrt(13))), where Y(n) = sqrt((13 - 3*sqrt(13))/2)*Y(n-1) + sqrt(13)*Y(n-2) - sqrt((13 + 3*sqrt(13))/2)*Y(n-3), with Y(0)=3, Y(1)=sqrt((13 - 3*sqrt(13))/2), and Y(2)=(13 + sqrt(13))/2. Moreover we can deduce the following decompositions: 2*Y(2*n) = a(n) - A216597(n)*sqrt(13) and Y(n) = s(1)^n + s(3)^n + s(9)^n (we have s(9) = -s(4)) - Roman Witula, Sep 22 2012 REFERENCES R. Witula and D. Slota, Quasi-Fibonacci numbers of order 13, Thirteenth International Conference on Fibonacci Numbers and their Applications, Congressus Numerantium, 201 (2010), 89-107. R. Witula, On some applications of formulas for sums of the unimodular complex numbers, Wyd. Pracowni Komputerowej Jacka Skalmierskiego, Gliwice 2011 (in Polish). LINKS Table of n, a(n) for n=0..26. R. Witula and D. Slota, Quasi-Fibonacci numbers of order 13, (abstract) see p. 15. Index entries for linear recurrences with constant coefficients, signature (13,-65,156,-182,91,-13). FORMULA G.f.: -(91*x^5-364*x^4+468*x^3-260*x^2+65*x-6) / (13*x^6-91*x^5+182*x^4-156*x^3+65*x^2-13*x+1). - Colin Barker, Jun 01 2013 EXAMPLE We have a(7)/2 + 2*A216597(7) = 26, 4*X(4) - X(6) = 13 + sqrt(13), 4*X(8) - X(10) = 91, 4*X(10) - X(12) = 13*(21 - sqrt(13)), 4*X(12) - X(14)= 78*(11 - sqrt(13)), 8*X(14) - 2*X(16) = 11*13*sqrt(13)*(3*sqrt(13) - 5) and X(6) - 10*X(2) = -6*sqrt(13) since 2*X(2) = 13 - sqrt(13), 2*X(4) = 39 - 5*sqrt(13), X(6) = 65 - 11*sqrt(13), 2*X(8) = 91*(5 - sqrt(13)), X(10) = 91*(9 - 2*sqrt(13)), X(12) = 3003 - 715*sqrt(13) = 13*(3*77 - 55*sqrt(13)), X(14) = 11154 - 2782*sqrt(13), 2*X(16) = 83655 - 21541*sqrt(13). MATHEMATICA LinearRecurrence[{13, -65, 156, -182, 91, -13}, {6, 13, 39, 130, 455, 1638}, 30] CROSSREFS Cf. A216605, A216486, A216597, A216540, A161905. Sequence in context: A280532 A342564 A338267 * A057451 A239794 A034753 Adjacent sequences: A216505 A216506 A216507 * A216509 A216510 A216511 KEYWORD nonn,easy AUTHOR Roman Witula, Sep 11 2012 EXTENSIONS Better name from Joerg Arndt, Sep 17 2012 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified July 19 20:58 EDT 2024. Contains 374436 sequences. (Running on oeis4.)