login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A338236
Number of numbers less than or equal to sqrt(n) whose square does not divide n.
8
0, 0, 0, 0, 1, 1, 1, 0, 1, 2, 2, 1, 2, 2, 2, 1, 3, 2, 3, 2, 3, 3, 3, 2, 3, 4, 3, 3, 4, 4, 4, 2, 4, 4, 4, 2, 5, 5, 5, 4, 5, 5, 5, 4, 4, 5, 5, 3, 5, 5, 6, 5, 6, 5, 6, 5, 6, 6, 6, 5, 6, 6, 5, 4, 7, 7, 7, 6, 7, 7, 7, 4, 7, 7, 6, 6, 7, 7, 7, 5, 6, 8, 8, 7, 8, 8, 8, 7, 8, 7, 8
OFFSET
1,10
COMMENTS
Number of squares less than n that do not divide n. - Wesley Ivan Hurt, Jan 06 2024
LINKS
FORMULA
a(n) = floor(sqrt(n)) - Sum_{k=1..sqrt(n)} (1 - ceiling(n/k^2) + floor(n/k^2)).
a(n) = floor(sqrt(n)) - tau(sqrt(n/A007913(n))) = A000196(n) - A000005(sqrt(n/A007913(n))). - Chai Wah Wu, Jan 31 2021
a(n) = Sum_{k=1..n} c(k) * (ceiling(n/k) - floor(n/k)), where c = A010052. - Wesley Ivan Hurt, Jan 06 2024
a(n) = A000196(n) - A046951(n). - Ridouane Oudra, Sep 04 2024
EXAMPLE
a(9) = 1; floor(sqrt(9)) = 3 and the square of 2 does not divide 9,
a(10) = 2; floor(sqrt(10)) = 3 and the squares of 2 and 3 do not divide 10.
MATHEMATICA
Table[Sum[Ceiling[n/k^2] - Floor[n/k^2], {k, Sqrt[n]}], {n, 100}]
PROG
(PARI) a(n) = sum(k=1, floor(sqrt(n)), if (n % k^2, 1)); \\ Michel Marcus, Jan 31 2021
(Python)
from sympy import divisor_count, integer_nthroot
from sympy.ntheory.factor_ import core
def A338236(n):
return integer_nthroot(n, 2)[0]-divisor_count(integer_nthroot(n//core(n, 2), 2)[0]) # Chai Wah Wu, Jan 31 2021
KEYWORD
nonn,easy,changed
AUTHOR
Wesley Ivan Hurt, Jan 30 2021
STATUS
approved