

A338195


Numbers k such that 3/k = 1/x + 1/y has a solution with 0 < x < y < k.


0



18, 20, 35, 36, 40, 45, 54, 56, 60, 70, 72, 77, 80, 84, 90, 100, 104, 105, 108, 110, 112, 120, 126, 135, 140, 143, 144, 154, 160, 162, 168, 170, 175, 176, 180, 182, 189, 198, 200, 208, 209, 210, 216, 220, 221, 224, 225, 231, 234, 240, 245, 252, 260, 264, 266, 270
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


LINKS

Table of n, a(n) for n=1..56.


PROG

(PARI) for(k=3, 270, forstep(y=k1, 1, 1, my(x=3/k1/y); if(numerator(x)==1&&1/x<y, print1(k, ", "); break)))


CROSSREFS

Cf. A073101, A337432.
Cf. A004611 (Numbers n such that 3/n cannot be written as the sum of 2 unit fractions).
Sequence in context: A054279 A186781 A164711 * A335897 A036170 A064271
Adjacent sequences: A338192 A338193 A338194 * A338196 A338197 A338198


KEYWORD

nonn


AUTHOR

Rainer Rosenthal and Hugo Pfoertner, Oct 15 2020


STATUS

approved



