login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A337556
a(0) = 1; a(n) = (1/3) * Sum_{k=1..n} binomial(n,k) * (4^k-1) * a(n-k).
3
1, 1, 7, 57, 607, 8121, 130527, 2447257, 52435327, 1263925881, 33851510047, 997303255257, 32052722909247, 1116001351341241, 41845542004844767, 1681112968022124057, 72039936723424794367, 3280036569708658302201, 158127582939120607830687, 8046697501049910668173657
OFFSET
0,3
LINKS
FORMULA
E.g.f.: 3 / (3 + exp(x) - exp(4*x)).
a(n) ~ n! * (r^3 - 1) * (4*r^3 - 16*r^2 + 64*r - 3) / (771 * log(r)^(n+1)), where r = 1.452626878833844... is the positive real root of the equation r*(r^3 - 1) = 3. - Vaclav Kotesovec, Aug 31 2020
MAPLE
E:= 3 / (3 + exp(x) - exp(4*x)):
S:= series(E, x, 41):
seq(n!*coeff(S, x, n), n=0..40); # Robert Israel, Oct 13 2020
MATHEMATICA
a[0] = 1; a[n_] := a[n] = (1/3) Sum[Binomial[n, k] (4^k - 1) a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 19}]
nmax = 19; CoefficientList[Series[3/(3 + Exp[x] - Exp[4 x]), {x, 0, nmax}], x] Range[0, nmax]!
PROG
(PARI) seq(n)={Vec(serlaplace(3 / (3 + exp(x + O(x*x^n)) - exp(4*x + O(x*x^n)))))} \\ Andrew Howroyd, Aug 31 2020
CROSSREFS
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Aug 31 2020
STATUS
approved