login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(0) = 1; a(n) = (1/3) * Sum_{k=1..n} binomial(n,k) * (4^k-1) * a(n-k).
3

%I #15 Oct 13 2020 23:51:12

%S 1,1,7,57,607,8121,130527,2447257,52435327,1263925881,33851510047,

%T 997303255257,32052722909247,1116001351341241,41845542004844767,

%U 1681112968022124057,72039936723424794367,3280036569708658302201,158127582939120607830687,8046697501049910668173657

%N a(0) = 1; a(n) = (1/3) * Sum_{k=1..n} binomial(n,k) * (4^k-1) * a(n-k).

%H Robert Israel, <a href="/A337556/b337556.txt">Table of n, a(n) for n = 0..387</a>

%F E.g.f.: 3 / (3 + exp(x) - exp(4*x)).

%F a(n) ~ n! * (r^3 - 1) * (4*r^3 - 16*r^2 + 64*r - 3) / (771 * log(r)^(n+1)), where r = 1.452626878833844... is the positive real root of the equation r*(r^3 - 1) = 3. - _Vaclav Kotesovec_, Aug 31 2020

%p E:= 3 / (3 + exp(x) - exp(4*x)):

%p S:= series(E,x,41):

%p seq(n!*coeff(S,x,n),n=0..40); # _Robert Israel_, Oct 13 2020

%t a[0] = 1; a[n_] := a[n] = (1/3) Sum[Binomial[n, k] (4^k - 1) a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 19}]

%t nmax = 19; CoefficientList[Series[3/(3 + Exp[x] - Exp[4 x]), {x, 0, nmax}], x] Range[0, nmax]!

%o (PARI) seq(n)={Vec(serlaplace(3 / (3 + exp(x + O(x*x^n)) - exp(4*x + O(x*x^n)))))} \\ _Andrew Howroyd_, Aug 31 2020

%Y Cf. A000556, A002450, A337555.

%K nonn

%O 0,3

%A _Ilya Gutkovskiy_, Aug 31 2020