OFFSET
0,5
COMMENTS
Used for getting strong canonical forms (SCFs) of the diagonal Latin squares and for fast enumerating of the diagonal Latin squares based on equivalence classes.
For all t > 0, a(2*t) = a(2*t+1).
LINKS
S. Kochemazov, O. Zaikin, E. Vatutin, and A. Belyshev, Enumerating Diagonal Latin Squares of Order Up to 9, Journal of Integer Sequences. Vol. 23. Iss. 1. 2020. Article 20.1.2.
E. I. Vatutin, About the number of X-based fillings of diagonals in a diagonal Latin squares of orders 1-15 (in Russian).
E. I. Vatutin, About the a(2*t)=a(2*t+1) equality (in Russian).
E. I. Vatutin, A. D. Belyshev, N. N. Nikitina, and M. O. Manzuk, Use of X-based diagonal fillings and ESODLS CMS schemes for enumeration of main classes of diagonal Latin squares, Telecommunications, 2023, No. 1, pp. 2-16, DOI: 10.31044/1684-2588-2023-0-1-2-16 (in Russian).
FORMULA
a(n) = A337303(n)/n!.
EXAMPLE
For n=4 there are 4 different X-based fillings of diagonals with main diagonal fixed to [0 1 2 3]:
0 . . 1 0 . . 1 0 . . 2 0 . . 2
. 1 0 . . 1 3 . . 1 0 . . 1 3 .
. 3 2 . . 0 2 . . 3 2 . . 0 2 .
2 . . 3 2 . . 3 1 . . 3 1 . . 3
CROSSREFS
KEYWORD
nonn
AUTHOR
Eduard I. Vatutin, Aug 22 2020
EXTENSIONS
More terms from Alois P. Heinz, Oct 08 2020
a(0)=1 prepended by Andrew Howroyd, Oct 09 2020
STATUS
approved