login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A107053
Numerators of coefficients that satisfy: 5^n = Sum_{k=0..n} c(k)*x^k for n>=0, where c(k) = a(k)/A107054(k).
11
1, 4, 4, 76, 307, 380989, 13464073, 3084163593839, 6109976845914041, 694491088545589897439, 1664245369537759004769053, 82473629015170976645702130970352147
OFFSET
0,2
COMMENTS
Sum_{k>=0} a(k)/A107054(k) = 14.052297927432224441845709796250699506418496460894575328...
FORMULA
a(n)/A107054(n) = Sum_{k=0..n} T(n, k)*5^k where T(n, k) = A107045(n, k)/A107046(n, k) = [A079901^-1](n, k) (matrix inverse of A079901).
EXAMPLE
5^0 = 1;
5^1 = 1 + (4)*1;
5^2 = 1 + (4)*2 + (4)*2^2;
5^3 = 1 + (4)*3 + (4)*3^2 + (76/27)*3^3;
5^4 = 1 + (4)*4 + (4)*4^2 + (76/27)*4^3 + (307/216)*4^4.
Initial coefficients are:
A107053/A107054 = {1, 4, 4, 76/27, 307/216, 380989/675000,
13464073/72900000, 3084163593839/60036284700000,
6109976845914041/491817244262400000, ...}
PROG
(PARI) {a(n)=numerator(sum(k=0, n, 5^k*(matrix(n+1, n+1, r, c, if(r>=c, (r-1)^(c-1)))^-1)[n+1, k+1]))}
CROSSREFS
KEYWORD
nonn,frac
AUTHOR
Paul D. Hanna, May 10 2005
STATUS
approved