login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A337291
a(n) = 3*binomial(4*n,n)/(4*n-1).
5
4, 12, 60, 364, 2448, 17556, 131560, 1017900, 8069424, 65204656, 535070172, 4446927732, 37353738800, 316621743480, 2704784196240, 23263187479980, 201275443944432, 1750651680235920, 15298438066553776, 134252511729576240, 1182622941581590080
OFFSET
1,1
COMMENTS
a(n) is the number of lattice paths from (0,0) to (3n,n) using only the steps (1,0) and (0,1) and whose only lattice points on the line y = x/3 are the path's endpoints. - Lucas A. Brown, Aug 21 2020
FORMULA
a(n) = 4*A006632(n).
G.f.: 4*x*F(x)^3 where F(x) = 1 + x*F(x)^4 is the g.f. of A002293.
MATHEMATICA
Array[3 Binomial[4 #, #]/(4 # - 1) &, 21] (* Michael De Vlieger, Aug 21 2020 *)
PROG
(PARI) a(n) = {3*binomial(4*n, n)/(4*n-1)} \\ Andrew Howroyd, Aug 21 2020
CROSSREFS
Sequence in context: A286073 A357711 A374656 * A324693 A276707 A350561
KEYWORD
nonn,easy
AUTHOR
Lucas A. Brown, Aug 21 2020
STATUS
approved