login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = 3*binomial(4*n,n)/(4*n-1).
5

%I #24 Aug 24 2020 00:57:45

%S 4,12,60,364,2448,17556,131560,1017900,8069424,65204656,535070172,

%T 4446927732,37353738800,316621743480,2704784196240,23263187479980,

%U 201275443944432,1750651680235920,15298438066553776,134252511729576240,1182622941581590080

%N a(n) = 3*binomial(4*n,n)/(4*n-1).

%C a(n) is the number of lattice paths from (0,0) to (3n,n) using only the steps (1,0) and (0,1) and whose only lattice points on the line y = x/3 are the path's endpoints. - _Lucas A. Brown_, Aug 21 2020

%F a(n) = 4*A006632(n).

%F G.f.: 4*x*F(x)^3 where F(x) = 1 + x*F(x)^4 is the g.f. of A002293.

%t Array[3 Binomial[4 #, #]/(4 # - 1) &, 21] (* _Michael De Vlieger_, Aug 21 2020 *)

%o (PARI) a(n) = {3*binomial(4*n,n)/(4*n-1)} \\ _Andrew Howroyd_, Aug 21 2020

%Y Cf. A006632, A337292.

%K nonn,easy

%O 1,1

%A _Lucas A. Brown_, Aug 21 2020