|
|
A337243
|
|
Compositions, sorted by increasing sum, increasing length, and increasing colexicographical order.
|
|
4
|
|
|
1, 2, 1, 1, 3, 2, 1, 1, 2, 1, 1, 1, 4, 3, 1, 2, 2, 1, 3, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 1, 5, 4, 1, 3, 2, 2, 3, 1, 4, 3, 1, 1, 2, 2, 1, 1, 3, 1, 2, 1, 2, 1, 2, 2, 1, 1, 3, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,2
|
|
LINKS
|
Table of n, a(n) for n=1..80.
|
|
EXAMPLE
|
The first 5 rows are:
(1),
(2), (1, 1),
(3), (2, 1), (1, 2), (1, 1, 1),
(4), (3, 1), (2, 2), (1, 3), (2, 1, 1), (1, 2, 1), (1, 1, 2), (1, 1, 1, 1),
(5), (4, 1), (3, 2), (2, 3), (1, 4), (3, 1, 1), (2, 2, 1), (1, 3, 1), (2, 1, 2), (1, 2, 2), (1, 1, 3), (2, 1, 1, 1), (1, 2, 1, 1), (1, 1, 2, 1), (1, 1, 1, 2), (1, 1, 1, 1, 1).
|
|
MAPLE
|
List := proc(n)
local i, j, k, L:
L := []:
for i from 1 to n do
for j from 1 to i do
L := [op(L), op(combinat:-composition(i, j))]:
od:
od:
for k from 1 to numelems(L) do L[k] := ListTools:-Reverse(L[k]): od:
L:
end:
|
|
CROSSREFS
|
Cf. A124734 (increasing length, then lexicographic).
Cf. A296774 (increasing length, then reverse lexicographic).
Cf. A337259 (increasing length, then reverse colexicographic).
Cf. A296773 (decreasing length, then lexicographic).
Cf. A296772 (decreasing length, then reverse lexicographic).
Cf. A337260 (decreasing length, then colexicographic).
Cf. A108244 (decreasing length, then reverse colexicographic).
Cf. A228369 (lexicographic).
Cf. A066099 (reverse lexicographic).
Cf. A228525 (colexicographic).
Cf. A228351 (reverse colexicographic).
Sequence in context: A263633 A171850 A087782 * A296774 A066099 A254111
Adjacent sequences: A337240 A337241 A337242 * A337244 A337245 A337246
|
|
KEYWORD
|
nonn,tabf
|
|
AUTHOR
|
Lorenzo Sauras Altuzarra, Aug 21 2020
|
|
STATUS
|
approved
|
|
|
|