login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A337243
Compositions, sorted by increasing sum, increasing length, and increasing colexicographical order.
4
1, 2, 1, 1, 3, 2, 1, 1, 2, 1, 1, 1, 4, 3, 1, 2, 2, 1, 3, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 1, 5, 4, 1, 3, 2, 2, 3, 1, 4, 3, 1, 1, 2, 2, 1, 1, 3, 1, 2, 1, 2, 1, 2, 2, 1, 1, 3, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1
OFFSET
1,2
EXAMPLE
The first 5 rows are:
(1),
(2), (1, 1),
(3), (2, 1), (1, 2), (1, 1, 1),
(4), (3, 1), (2, 2), (1, 3), (2, 1, 1), (1, 2, 1), (1, 1, 2), (1, 1, 1, 1),
(5), (4, 1), (3, 2), (2, 3), (1, 4), (3, 1, 1), (2, 2, 1), (1, 3, 1), (2, 1, 2), (1, 2, 2), (1, 1, 3), (2, 1, 1, 1), (1, 2, 1, 1), (1, 1, 2, 1), (1, 1, 1, 2), (1, 1, 1, 1, 1).
MAPLE
List := proc(n)
local i, j, k, L:
L := []:
for i from 1 to n do
for j from 1 to i do
L := [op(L), op(combinat:-composition(i, j))]:
od:
od:
for k from 1 to numelems(L) do L[k] := ListTools:-Reverse(L[k]): od:
L:
end:
CROSSREFS
Cf. A124734 (increasing length, then lexicographic).
Cf. A296774 (increasing length, then reverse lexicographic).
Cf. A337259 (increasing length, then reverse colexicographic).
Cf. A296773 (decreasing length, then lexicographic).
Cf. A296772 (decreasing length, then reverse lexicographic).
Cf. A337260 (decreasing length, then colexicographic).
Cf. A108244 (decreasing length, then reverse colexicographic).
Cf. A228369 (lexicographic).
Cf. A066099 (reverse lexicographic).
Cf. A228525 (colexicographic).
Cf. A228351 (reverse colexicographic).
Sequence in context: A171850 A356144 A087782 * A296774 A066099 A254111
KEYWORD
nonn,tabf
AUTHOR
STATUS
approved