login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A171850 Triangle read by rows: T(n,k) is the number of peakless Motzkin paths of length n for which the area below the path minus the number of U-steps is k (n>=0, k>=0). 1
1, 1, 1, 1, 1, 1, 2, 1, 1, 3, 2, 1, 1, 1, 4, 4, 2, 3, 2, 1, 1, 5, 7, 5, 5, 5, 5, 2, 1, 1, 1, 6, 11, 10, 10, 10, 10, 8, 6, 4, 3, 2, 1, 1, 7, 16, 18, 18, 21, 21, 17, 16, 14, 11, 9, 7, 5, 2, 1, 1, 1, 8, 22, 30, 32, 38, 43, 40, 34, 32, 32, 26, 23, 20, 14, 10, 8, 4, 3, 2, 1, 1, 9, 29, 47, 55, 67, 79, 83 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,7

COMMENTS

The considered statistic (area below the path minus number of U-steps) in RNA secondary structure terminology is called density (see the Willenbring reference, p. 1611).

Number of entries in row n is 1 + floor((n-1)^2/4).

Sum of entries in row n = A004148(n) (the secondary structure numbers).

Sum_{k>=0} k*T(n,k) = A171851(n).

LINKS

Table of n, a(n) for n=0..88.

R. Willenbring, RNA structure, permutations and statistics, Discrete Appl. Math., 157, 2009, 1607-1614.

FORMULA

The trivariate g.f. G=G(t,u,z), where z marks length, t marks the area below the path, and x marks number of U-steps, satisfies G(t,x,z) = 1 + zG(t,x,z) + txz^2*(G(t,x,tz) - 1)G(t,x,z) (yielding a continued fraction expression for G(t,1/t,z)).

EXAMPLE

T(4,2)=1 because we have UHHD, where U=(1,1), H=(1,0), D=(1,-1).

Triangle starts:

  1;

  1;

  1;

  1,  1;

  1,  2,  1;

  1,  3,  2,  1,  1;

  1,  4,  4,  2,  3,  2,  1;

  1,  5,  7,  5,  5,  5,  5,  2,  1,  1;

  1,  6, 11, 10, 10, 10, 10,  8,  6,  4,  3,  2,  1;

MAPLE

g[0] := 1/(1-z+z^2-z^2*g[1]): for n to 12 do g[n] := subs({z = t*z, g[n] = g[n+1]}, g[n-1]) end do: G := subs(g[16] = 0, g[0]): Gser := simplify(series(G, z = 0, 15)): for n from 0 to 11 do P[n] := sort(coeff(Gser, z, n)) end do: for n from 0 to 11 do seq(coeff(P[n], t, k), k = 0 .. floor((1/4)*(n-1)^2)) end do; # yields sequence in triangular form

CROSSREFS

Cf. A004148, A171851.

Sequence in context: A220482 A084580 A263633 * A087782 A296774 A066099

Adjacent sequences:  A171847 A171848 A171849 * A171851 A171852 A171853

KEYWORD

nonn,tabf

AUTHOR

Emeric Deutsch, Feb 08 2010

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 7 10:37 EDT 2020. Contains 333300 sequences. (Running on oeis4.)