OFFSET
0,8
REFERENCES
R. P. Stanley, Enumerative Combinatorics, Vol I, Second Edition, Section 3.18.
FORMULA
Let e(x) = Sum_{n>=0} x^n/2^binomial(n,2). Then e(x)^k = Sum_{n>=0} Z_n(k)*x^n/2^biomial(n,2) and T(n,k) = Z_n(k). Z_n(k) is the zeta polynomial of the class of posets described in A117402.
EXAMPLE
1, 1, 1, 1, 1, 1, 1, ...
0, 1, 2, 3, 4, 5, 6, ...
0, 1, 4, 9, 16, 25, 36, ...
0, 1, 10, 35, 84, 165, 286, ...
0, 1, 34, 195, 644, 1605, 3366, ...
0, 1, 162, 1635, 7620, 24389, 62310, ...
0, 1, 1090, 21187, 143748, 599685, 1882054, ...
MATHEMATICA
nn = 6; e[x_] := Sum[x^n/(2^Binomial[n, 2]), {n, 0, nn}];
Table[Table[2^Binomial[n, 2], {n, 0, nn}] PadRight[CoefficientList[Series[e[x]^k, {x, 0, nn}], x], nn + 1], {k, 0, nn}] // Transpose // Grid
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Geoffrey Critzer, Jan 28 2021
STATUS
approved