login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A337161
Square array read by antidiagonals: T(n,k) is the number of simple labeled graphs G with vertex set V(G) = {v_1,...,v_n} along with a (coloring) function C:V(G) ->[k] such that v_i adjacent to v_j implies C(v_i) != C(v_j) and i<j implies C(v_i) <= C(v_j); n>=0, k>=0.
0
1, 1, 0, 1, 1, 0, 1, 2, 1, 0, 1, 3, 4, 1, 0, 1, 4, 9, 10, 1, 0, 1, 5, 16, 35, 34, 1, 0, 1, 6, 25, 84, 195, 162, 1, 0, 1, 7, 36, 165, 644, 1635, 1090, 1, 0, 1, 8, 49, 286, 1605, 7620, 21187, 10370, 1, 0, 1, 9, 64, 455, 3366, 24389, 143748, 430467, 139522, 1, 0, 1, 10, 81, 680, 6279, 62310, 599685, 4412164, 13812483, 2654722, 1, 0, 1, 11, 100, 969, 10760, 136871, 1882054, 24413445, 223233540, 702219779, 71435266, 1, 0
OFFSET
0,8
REFERENCES
R. P. Stanley, Enumerative Combinatorics, Vol I, Second Edition, Section 3.18.
FORMULA
Let e(x) = Sum_{n>=0} x^n/2^binomial(n,2). Then e(x)^k = Sum_{n>=0} Z_n(k)*x^n/2^biomial(n,2) and T(n,k) = Z_n(k). Z_n(k) is the zeta polynomial of the class of posets described in A117402.
EXAMPLE
1, 1, 1, 1, 1, 1, 1, ...
0, 1, 2, 3, 4, 5, 6, ...
0, 1, 4, 9, 16, 25, 36, ...
0, 1, 10, 35, 84, 165, 286, ...
0, 1, 34, 195, 644, 1605, 3366, ...
0, 1, 162, 1635, 7620, 24389, 62310, ...
0, 1, 1090, 21187, 143748, 599685, 1882054, ...
MATHEMATICA
nn = 6; e[x_] := Sum[x^n/(2^Binomial[n, 2]), {n, 0, nn}];
Table[Table[2^Binomial[n, 2], {n, 0, nn}] PadRight[CoefficientList[Series[e[x]^k, {x, 0, nn}], x], nn + 1], {k, 0, nn}] // Transpose // Grid
CROSSREFS
Cf. A322280, A117402 (column k=2).
Sequence in context: A210391 A071921 A003992 * A246118 A171882 A214075
KEYWORD
nonn,tabl
AUTHOR
Geoffrey Critzer, Jan 28 2021
STATUS
approved