login
A337160
Primes p such that the 3 X 3 matrix with components (row by row) prime(k+m), 0 <= m <= 8 has zero determinant, where p = prime(k).
0
2213, 4073, 8011, 9041, 15649, 23663, 37483, 38453, 59663, 63487, 65111, 71861, 83557, 97157, 100279, 118801, 129527, 131707, 139291, 163601, 166597, 166799, 180181, 180233, 195691, 203807, 209233, 217201, 227561, 238657, 289139, 309121, 327473
OFFSET
1,1
COMMENTS
Primes arising from A117345.
FORMULA
a(n) = prime(A117345(n)).
EXAMPLE
The next 8 primes after 2213 are 2221, 2237, 2239, 2243, 2251, 2267, 2269, 2273, and we have det({{2213, 2221, 2237}, {2239, 2243, 2251}, {2267, 2269, 2273}}) = 0, hence 2213 is a term.
PROG
(PARI) for(k=1, 35000, M=matrix(3, 3, i, j, prime(k+3*(i-1)+j-1)); if(matdet(M, 1)==0, print1(prime(k), ", ")))
CROSSREFS
KEYWORD
nonn
AUTHOR
Jianing Song, Jan 28 2021
STATUS
approved