login
A337093
Difference between the number of unordered factorizations and the number of distinct sums of terms in these unordered factorizations for those integers where this difference is positive.
0
1, 1, 1, 2, 1, 2, 1, 3, 2, 2, 1, 4, 1, 2, 2, 5, 1, 6, 1, 4, 3, 2, 1, 1, 7, 2, 2, 3, 4, 1, 5, 1, 7, 2, 2, 2, 13, 1, 2, 2, 8, 1, 6, 1, 4, 5, 2, 1, 12, 2, 4, 2, 4, 1, 12, 2, 7, 2, 2, 1, 15, 1, 2, 5, 11, 3, 5, 1, 2, 4, 2, 5, 1, 20, 1, 2, 5, 4, 2, 5, 1, 13, 6, 2, 1
OFFSET
1,4
FORMULA
a(n) = A001055(A337080(n)) - A069016(A337080(n)).
PROG
(PARI) factz(n, minn) = {my(v=[]); fordiv(n, d, if ((d>=minn) && (d<=sqrtint(n)), w = factz(n/d, d); for (i=1, #w, w[i] = concat([d], w[i]); ); v = concat(v, w); ); ); concat(v, [[n]]); }
factorz(n) = factz(n, 2);
lista(nn) = {for (n=1, nn, my(vf = factorz(n)); my(vs = apply(x->vecsum(x), vf)); my(d = #vs - #Set(vs)); if (d>0, print1(d, ", ")); ); }
CROSSREFS
KEYWORD
nonn
AUTHOR
Michel Marcus, Aug 15 2020
STATUS
approved