login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A337093
Difference between the number of unordered factorizations and the number of distinct sums of terms in these unordered factorizations for those integers where this difference is positive.
0
1, 1, 1, 2, 1, 2, 1, 3, 2, 2, 1, 4, 1, 2, 2, 5, 1, 6, 1, 4, 3, 2, 1, 1, 7, 2, 2, 3, 4, 1, 5, 1, 7, 2, 2, 2, 13, 1, 2, 2, 8, 1, 6, 1, 4, 5, 2, 1, 12, 2, 4, 2, 4, 1, 12, 2, 7, 2, 2, 1, 15, 1, 2, 5, 11, 3, 5, 1, 2, 4, 2, 5, 1, 20, 1, 2, 5, 4, 2, 5, 1, 13, 6, 2, 1
OFFSET
1,4
FORMULA
a(n) = A001055(A337080(n)) - A069016(A337080(n)).
PROG
(PARI) factz(n, minn) = {my(v=[]); fordiv(n, d, if ((d>=minn) && (d<=sqrtint(n)), w = factz(n/d, d); for (i=1, #w, w[i] = concat([d], w[i]); ); v = concat(v, w); ); ); concat(v, [[n]]); }
factorz(n) = factz(n, 2);
lista(nn) = {for (n=1, nn, my(vf = factorz(n)); my(vs = apply(x->vecsum(x), vf)); my(d = #vs - #Set(vs)); if (d>0, print1(d, ", ")); ); }
CROSSREFS
KEYWORD
nonn
AUTHOR
Michel Marcus, Aug 15 2020
STATUS
approved