OFFSET
1,2
LINKS
G. C. Greubel, Table of n, a(n) for n = 1..445
FORMULA
E.g.f.: Sum_{k>=1} (exp(3*x^k) - 1) / 3.
a(p) = p! + 3^(p - 1), where p is prime.
MATHEMATICA
Table[n! Sum[3^(d - 1)/d!, {d, Divisors[n]}], {n, 1, 22}]
nmax = 22; CoefficientList[Series[Sum[(Exp[3 x^k] - 1)/3, {k, 1, nmax}], {x, 0, nmax}], x] Range[0, nmax]! // Rest
PROG
(PARI) a(n) = n! * sumdiv(n, d, 3^(d-1)/d!); \\ Michel Marcus, Aug 12 2020
(Magma)
A336998:= func< n | Factorial(n)*(&+[3^(d-1)/Factorial(d): d in Divisors(n)]) >;
[A336998(n): n in [1..40]]; // G. C. Greubel, Jun 26 2024
(SageMath)
def A336998(n): return factorial(n)*sum(3^(k-1)/factorial(k) for k in (1..n) if (k).divides(n))
[A336998(n) for n in range(1, 41)] # G. C. Greubel, Jun 26 2024
CROSSREFS
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Aug 10 2020
STATUS
approved