

A336806


a(n) = prime(k) for the first k such that Product_{j=k..k+n1} prime(j) mod Sum_{j=k..k+n1} prime(j) is prime.


1



3, 5, 3, 13, 3, 23, 5, 67, 5, 37, 3, 41, 5, 29, 19, 23, 37, 19, 7, 17, 5, 7, 3, 7, 19, 31, 5, 13, 3, 23, 19, 5, 23, 83, 13, 17, 53, 5, 7, 17, 11, 23, 41, 7, 97, 17, 47, 37, 61, 43, 89, 5, 13, 7, 113, 41, 5, 5, 7, 5, 29, 11, 5, 17, 61, 43, 79, 29, 31, 31, 11, 97, 73, 23, 53, 97, 13, 89, 11, 103
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

2,1


LINKS



EXAMPLE

a(4) = 3 as 3*5*7*11 mod (3+5+7+11) = 11 is prime.


MAPLE

f:= proc(n) local L, k;
L:= [seq(ithprime(k), k=1..n)];
do
if isprime(convert(L, `*`) mod convert(L, `+`)) then return L[1] fi;
L:= [op(L[2..1]), nextprime(L[1])];
od;
end proc:
map(f, [$2..100]);


CROSSREFS



KEYWORD

nonn


AUTHOR



STATUS

approved



