Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #10 Jan 27 2021 22:36:28
%S 3,5,3,13,3,23,5,67,5,37,3,41,5,29,19,23,37,19,7,17,5,7,3,7,19,31,5,
%T 13,3,23,19,5,23,83,13,17,53,5,7,17,11,23,41,7,97,17,47,37,61,43,89,5,
%U 13,7,113,41,5,5,7,5,29,11,5,17,61,43,79,29,31,31,11,97,73,23,53,97,13,89,11,103
%N a(n) = prime(k) for the first k such that Product_{j=k..k+n-1} prime(j) mod Sum_{j=k..k+n-1} prime(j) is prime.
%H Robert Israel, <a href="/A336806/b336806.txt">Table of n, a(n) for n = 2..7700</a>
%e a(4) = 3 as 3*5*7*11 mod (3+5+7+11) = 11 is prime.
%p f:= proc(n) local L,k;
%p L:= [seq(ithprime(k),k=1..n)];
%p do
%p if isprime(convert(L,`*`) mod convert(L,`+`)) then return L[1] fi;
%p L:= [op(L[2..-1]),nextprime(L[-1])];
%p od;
%p end proc:
%p map(f, [$2..100]);
%K nonn
%O 2,1
%A _J. M. Bergot_ and _Robert Israel_, Jan 27 2021