|
|
A121278
|
|
Number of distinct integers of the form (x^n + y^n) mod n^2.
|
|
0
|
|
|
1, 3, 5, 3, 13, 9, 19, 5, 15, 15, 51, 9, 73, 30, 65, 9, 113, 21, 163, 9, 25, 63, 265, 15, 65, 57, 45, 30, 281, 45, 391, 17, 255, 123, 247, 21, 577, 165, 65, 15, 841, 27, 757, 63, 195, 234, 1105, 27, 133, 75
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,2
|
|
COMMENTS
|
It is enough to take x,y from {0,1,...,n-1}. Therefore a(n)<=n*(n+1)/2.
|
|
LINKS
|
|
|
PROG
|
(PARI) { a(n) = my(S, t); S=Set(); for(x=0, n-1, for(y=x, n-1, t=lift(Mod(x, n^2)^n+Mod(y, n^2)^n); S=setunion(S, [t]); ); ); #S }
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|