login
A336773
a(n) is the least prime of the form 2^j*3^k + 1, j > 0, k > 0, j + k = n. a(n) = 0 if no such prime exists.
5
7, 13, 37, 73, 97, 193, 577, 769, 3457, 10369, 0, 12289, 629857, 839809, 147457, 995329, 1990657, 786433, 5308417, 120932353, 14155777, 28311553, 0, 113246209, 29386561537, 3439853569, 6879707137, 1811939329, 18345885697, 3221225473, 1253826625537, 0, 85691213438977
OFFSET
2,1
LINKS
MAPLE
f:= proc(n) local k, p;
for k from 1 to n-1 do
p:= 2^(n-k)*3^k+1;
if isprime(p) then return p fi
od;
0
end proc:
map(f, [$2..40]); # Robert Israel, Aug 30 2020
PROG
(PARI) for(n=2, 34, my(pm=oo); for(j=1, n-1, my(k=n-j, p=2^j*3^k+1); if(isprime(p), pm=min(p, pm))); print1(if(pm==oo, 0, pm), ", "))
CROSSREFS
Cf. A033845, A058383, A336772 (positions of 0).
Sequence in context: A088985 A022005 A281317 * A118819 A118525 A213537
KEYWORD
nonn
AUTHOR
Hugo Pfoertner, Aug 28 2020
STATUS
approved