login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A336664
Number of distinct divisors d of n with the property that d = (the number of nonnegative bases m < n such that m^k == m (mod n))/(the number of nonnegative bases m < n such that -m^k == m (mod n)) for some nonnegative k.
3
1, 1, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 3, 2, 2, 3, 2, 2, 2, 2, 2, 2, 3, 2, 3, 2, 2, 3, 2, 2, 2, 2, 3, 3, 2, 2, 3, 3, 2, 2, 2, 2, 4, 2, 2, 2, 3, 3, 3, 2, 2, 3, 3, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 2, 4, 2, 2, 3, 2, 3, 3, 2, 2, 2, 3, 2, 3, 2, 2, 4, 3, 2, 2, 2, 3, 2
OFFSET
1,3
COMMENTS
For any k >= 0, the value of (the number of nonnegative bases m < n such that m^k == m (mod n))/(the number of nonnegative bases m < n such that -m^k == m (mod n)) is the value of some part of n, and is equal or unequal to the value of some divisor of n. Starting with k = 2, these infinite sequences of the parts of n are periodic with a period equal to A002322(n) (or A000010(n)). Also these sequences are different, but among n there are pairs of numbers (1 and 2, 3 and 6, ...) for which they are the same.
For n >= 1, minimal d is equal to 1 and maximal d is equal to A026741(n).
If n: 1, 2, 3, 5, 6, 10, 15, 17, 30, 34, 51, 85, 102, ..., then d = (the number of nonnegative bases m < n such that m^k = m)/(the number of nonnegative bases m < n such that -m^k = m) for all nonnegative k.
LINKS
EXAMPLE
For n = 1 the a(1) = 1 solution d is 1 (k = 0),
n = 2 the a(2) = 1 solution d is 1 (k = 0),
n = 3 the a(3) = 2 solutions d are 1 (k = 0) and 3 (k = 1),
n = 4 the a(4) = 2 solutions d are 1 (k = 0) and 2 (k = 1),
n = 5 the a(5) = 2 solutions d are 1 (k = 0) and 5 (k = 1),
n = 6 the a(6) = 2 solutions d are 1 (k = 0) and 3 (k = 1),
n = 7 the a(7) = 2 solutions d are 1 (k = 0) and 7 (k = 1),
n = 8 the a(8) = 2 solutions d are 1 (k = 0) and 4 (k = 1),
n = 9 the a(9) = 3 solutions d are 1 (k = 0), 3 (k = 3) and 9 (k = 1).
PROG
(PARI) T(n, k) = sum(m=0, n-1, Mod(m, n)^k == m)/sum(m=0, n-1, Mod(-m, n)^k == m); \\ A334006
vec(n) = vecsort(vector(n, k, T(n, k-1)), , 8);
a(n) = { my(v=vec(n)); sumdiv(n, d, vecsearch(v, d) != 0); }; \\ Michel Marcus, Aug 27 2020, edited for speed by Antti Karttunen, Dec 13 2021
CROSSREFS
KEYWORD
nonn
AUTHOR
STATUS
approved